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Abstract

The Internet of Things (IoT) is predicted to lead to the deployment of a very large number
(possibly trillions) of connected smart sensors for various applications. Such a massive deployment
of smart sensors is not environmentally sustainable if the smart sensors are replaced every two
years because of the pressure they put on natural resources and the ecotoxicity of the e-waste
they generate.

Furthermore, the rising climate change due to ecosystem destruction involves monitoring forests
in order to analyze and preserve the ecosystem. Such monitoring is typically achieved manually
via a person who samples data less than once a day, which fails to provide strong results and
asks for human presence during data acquisition.

To solve these issues, the focus of this master thesis is on the development of an autonomous and
efficient audio smart sensor continuously analyzing the forest ecosystem. To fulfill the energy
constraints implied by its total autonomy, this sensor harvests energy from the environment
through miniaturized photovoltaic cells sized according to the sun illuminance throughout days
and seasons, using an environmentally-friendly and non-toxic supercapacitor to store energy.
With a 15+ year lifetime, this fully autonomous device operates at an optimized 2.5 V supply
voltage reaching 22.1 mW of average power harvesting/consumption. An electret condenser
microphone collects a signal as low as 16 dBSPL (compared to a 14.22 dBSPL input-referred
noise), which is then amplified in the full frequency range of bird emission (20 Hz – 20 kHz) by a
low-noise and low-power analog front-end. This signal is further processed in an ultra-low-power
chip embedding a microcontroller, alternating between run and sleep modes with a 1/3 duty
cycle, and a transceiver optimized for IoT applications with LoRaWAN networks.

The microcontroller detects sounds when birds are active (typically during the day for more
than 12 hours) and ensures the radio-frequency communication at night depending on the
supercapacitor voltage that is carefully monitored in real time. It sends information about
the bird species encountered during the day, as well as their apparition frequency. In case of
firmware update, this device receives the associated fragments when its energy is sufficient and
it automatically changes the firmware with energy-optimized software requiring only 10.6 J for
the whole update.

By computing the weighted average frequency of the received sounds, the smart sensor is able
to discriminate between four common birds in Belgium: the pigeon, blackbird, great tit and
blue tit. For each species, several songs have been analyzed and used to train a k-nearest
neighbors (KNN) classifier working in the real-time embedded system. Its precision, defined
as the likelihood to find the correct species, reaches 94% for songs coming from the previously
learned database. For newly analyzed sounds, the detection algorithm performs likewise. More
complex machine-learning algorithms could finally be further designed to discriminate between
more species.
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Chapter 1

Introduction

This thesis is dedicated to people interested in audio monitoring and its subsequent recent
rise, as well as in the technical details/constraints related to the design of such sensors. It
is accessible for people from diverse domains, but a background in engineering is nonetheless
advised.

Context
The Internet of Things (IoT) is a system of interrelated computing devices that are provided
with unique identifiers and the ability to transfer data over a network without requiring human-
to-human or human-to-computer interaction. It is predicted to lead to the deployment of a very
large number (possibly trillions) of connected smart sensors for various applications. However,
such a massive deployment of smart sensors is not environmentally sustainable if the smart
sensors are replaced every two years because of the pressure they put on natural resources and
the ecotoxicity of the e-waste they generate. Therefore, it is needed to fight obsolescence in the
IoT domain by enabling a 10+ year lifetime for the smart sensors.

Audio monitoring Forests are important sources for biodiversity and ecological balance.
They provide many benefits and it is the main function for water and soil conservation, genetic
resources for plant and animal, and also a source of wood supply and other forest goods. They
also have important benefits on human physical and mental health [1]. However, recently the
green forest environment has been interrupted by unethical activities such as development
activities that decrease the benefits of the forest contribution. Thus, in order to ensure long-term
forest autonomy, it is important to implement a monitoring system that is responsible for
providing effective monitoring for forest environment. Forest monitoring is not limited to
environmental issues only, but it also includes fire monitoring and detection in forests [2]. To
set the problems, a policy-relevant infrastructure for monitoring of forest ecosystems has been
recently proposed in the European Union [3].

Nowadays, some key variables, such as tree health and biodiversity, are only collected once a
year because they must be assessed by a well-trained human operator. This low observation
frequency considerably limits the possibility of characterizing evolution trends relating them
with explanatory causes.
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To achieve this goal of an autonomous long-lasting sensor, energy needs to be harvested from
the environment through miniaturized photovoltaic cells, using batteries whose chemistry does
not wear out and having reconfiguration capabilities to keep up with application, security and
communication protocol updates.

Contributions
In this master thesis, a operational device is built to monitor bird songs in forest. It is attached
to a tree, it records sounds, analyzes and sends them wirelessly. Thanks to a supercapacitor
and solar cells, it is fully autonomous, efficient and connected to the cloud. It is in operation
for more than 15 years without any human assistance and can discriminate between bird songs
which are rather distinct (based on their frequency spectrum).

The objectives of this thesis are multiple. It first aims at improving the audio monitoring quality
in forest while reducing human interactions, especially in areas with difficult access. Via this
text, it also includes providing useful information for diverse people interested in the domain,
such as companies willing to improve ecosystem monitoring or students facing a related problem.

For this purpose, all the files used for the simulations as well as the LaTeX source code of this
thesis are fully open-source under the MIT license1 at https://github.com/MartinBraquet/
master-thesis-UCLouvain.

Structure
The structure of this thesis has been carefully built to replicate the design process of this sensor.
Indeed, the chapters totally mimic the real chronology throughout the year, in such a way that
each chapter is mainly based on the design choices of the previous chapters.

Chapter 2 describes the use case, by detailing the state-of-the-art of audio monitoring, the
requirements for the system and its general architecture.

Chapter 3 details the different types of energy storage, from the primary battery to the
supercapacitor and the new developments. They are then compared and the most suited for
this application is selected.

Chapter 4 is dedicated to the power management. The selection of the supply voltage as well as
the operation of the power management unit are explained.

Chapter 5 analyzes the sensing subsystem. After a brief review of the principles of wave
propagation, different kinds of microphones are detailed and compared, leading to the selection
of the most meaningful. Then, the analog front-end is detailed, associated with the design of
each component. The best microphone is then chosen such that it optimizes the noise / power
consumption specifications.

Chapter 6 gives a description of the data processing and transmission, with an emphasis on the
microcontroller behavior.

1Provided that the reader gives appropriate credit, he is free to copy and redistribute the material in any
medium or format under the same license as the original. He has permission to remix, transform, and build
upon the material for any purpose, even commercially.
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Chapter 7 describes the power supply by first summarizing the whole power consumption. The
best solar cells are then selected in accordance with the expected sun illuminance. The superca-
pacitor is characterized and its capacitance is designed according to the power management
unit specifications.

Chapter 8 details the final model, with its design and prototyping, and ends with a complete
validation of the system.

Chapter 9 provides different inference algorithms used to process, inside the microcontroller,
the received data from the microphone. Experimental results are provided and reviewed.

Chapter 10 gives some perspectives of improvement for an application which is still new with
great perspectives.

Chapter 11 ends this work with a conclusion. The appendices give additional details on the tran-
simpedance amplifier, the noise gain of the microphone amplifier and the PCB layout/schematic
of the final model.
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Chapter 2

Use case

This chapter describes a few state-of-the-art IoT smart sensors for forest monitoring and the
process/systems required to accomplish the aforementioned goals.

2.1 State of the art of IoT sensors for forest monitoring
Since 2000, wireless sensor networks (WSNs) have received increasing attention in research on
automatic natural environments [4].

For forest monitoring, research has already been achieved as attested by the following state of
the art. First, in [5], they worked on autonomous recording units which have been widely used
in a large number of bird studies in recent years, but challenges remain in estimating abundance
based on acoustic monitoring. They tested whether vocal activity rate index (VAR; the number
of songs per unit time for a species), recorded using autonomous recording units, was related
to population abundance in two terrestrial bird species. Second, in [6], they illustrate a forest
monitoring system solution of wireless sensor networks based on ZigBee by using sensor nodes
and coordinator nodes. Third, in [7], a 20-day wireless sensor network of 18 nodes has been
deployed in a mountain area. It has a good fidelity since they received 87% of sent sample data.
Their primary concern remains to enlarge the network scale and prolong the network lifetime.

However, these previous works show that the use of WSNs has been limited to simple tasks due
to key technological issues. First, the high power consumption of the sensor nodes in operation
leads to a trade-off between the density of the sensor deployment (limited by the frequency of
battery replacement by an operator) and the complexity of the ecosystem parameters to monitor.
Second, the limited range of low-power wireless communication prevented large-scale deployment.
Third, the monitoring of complex, non-directly observable parameters (e.g. bird population, tree
health) is impeded by the lack of low-power algorithms (typically machine learning) that would
process on-chip data. However, today, technological advances in ultra-low-power processors [8],
IoT communications and artificial intelligence open new possibilities. A brief insight of them
will be described in this work.

Communication In regard to these topics, low power communication protocols also appeared.
There is a trade-off between energy and range that such devices can sustain. The data rate, i.e.
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the amount of data transmitted per unit of time, can be tuned as a degree of freedom to adjust
this trade-off. It is thus desirable to produce reconfigurable solutions.

For long-range communications, a low-power wide-area network (LPWAN) such as LoRa is used.
LoRa is a spread spectrum modulation technique derived from chirp spread spectrum (CSS)
technology and is the first low-cost implementation of chirp spread spectrum for commercial
usage. LoRa also has a lot of applications in urban areas, such as waste management in smart
cities [9].

For short-range communications, a wireless personal area network (WPAN) such as Bluetooth
low energy (BLE) is used since they consume less energy per bit sent (30 nJ/bit compared
to 1 µJ/bit for LoRa [10]). For this, multiple challenges exist such as spectrum congestion
(due to the limited data rate), data deluge, security flaws, natural resources, ecotoxicity,
battery charging/replacement. Multi-hop transfer describes communications between several
sensors, they can help solve some of these issues by increasing the range but with a costly
synchronization [11].

Data processing With the limited data rate of low-power communication protocols, local
data storage and processing are required to extract and store meaningful information.

In addition to on-chip data processing, edge computing has been proposed to further reduce
the data flow and hence the power consumption, it refers to the enabling technologies allowing
computation to be performed at the edge of the network, on downstream data on behalf of cloud
services and on upstream data on behalf of IoT services [12]. Here, edges are any computing
and network resources along the path between data sources and cloud data center (e.g. for
forest monitoring, a gateway between the smart sensors and the cloud data centers).

For sound analysis, some algorithms such as Blind Audio Source Separation (BASS) have been
developed to discriminate the sound from several sources (e.g. birds) with the help of several
sensors (that is, microphones). Methods exist to rank existing BASS algorithms according to
their performance on the same test data [13].

2.2 General architecture
The general architecture of this type of sensor node is given in Figure 2.1. A sensor is a device
which probes, processes and sends diverse physical subjects in an environment. For this work,
the physical subject is the sound pressure.

Inside the sensor node, there are typically four submodules:

• Sensor : The sensor captures data from its environment by producing a measurable
response to a change in a physical condition like temperature or pressure. It has specific
characteristics such as accuracy, sensitivity. . . The physical signal is typically filtered
and amplified in an analog front-end (AFE). The continual analog signal is then sent to
a controller for further processing, either in continuous form or in digital form via an
analog-to-digital converter (ADC).

• Controller : The data are processed in a controller, which is most often a microcontroller
for its flexibility to connect to other devices, ease of programming, low cost and low
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power consumption. The microcontroller performs tasks, processes data and controls the
functionality of other components in the sensor node.

• Transceiver : The transmission (TX) and reception (RX) are combined in a transceiver
which allows exchanging data, mostly wirelessly through radio frequency (RF) with
an antenna. WSNs tend to use license-free communication frequencies1, LoRa uses for
example license-free sub-gigahertz radio frequency bands (like 433 MHz, 868 MHz (Europe))
enabling long-range transmissions with low power consumption.

• Power management: Since the wireless sensor node is often placed in a hard-to-reach
location, changing the battery regularly can be costly and inconvenient. Hence, an
important aspect in the development of a wireless sensor node is ensuring that there is
always adequate energy available to power the system. The sensor node consumes power
for sensing, data processing and communicating. Power is stored either in batteries or
capacitors. They renew their energy from solar sources, radio frequency, temperature
differences, or vibration.

SensorSound,. . . Controller Transceiver

Power management

Sensor nodeEnvironment

Physical subject

Figure 2.1: Block diagram of a general IoT sensor node

Because energy is the most important scarcity in such sensors (defining its lifetime), one has to
keep in mind the power consumption of each block throughout the design. It is expected that
the parts with the most power consumption are the microcontroller, the transceiver and the
microphone. The other parts will be designed to be negligible compared to the formers.

2.3 Requirements analysis
The sensor that will be produced needs to fit the following requirements:

• The microphone detects sounds up to 50 m in order to produce a reasonable inventory of
bird population.

• It is able to communicate wirelessly by receiving and transmitting data under power
constraints.

• Based on the continuously received sound, the sensor has to discriminate the bird species
among a small group (4) of selected birds.

1The ISM radio bands are portions of the radio spectrum reserved internationally for industrial, scientific and
medical (ISM) purposes other than telecommunications.
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• The lifetime is one of the most important demands for this application, the sensor has to
work fully autonomously (day and night) for at least 15 years.

• The materials used for the design, particularly the energy storage element, must have low
toxicity.

• The device cannot be invasive and should be easy to install. The total volume must not
exceed 200 mm× 200 mm× 55 mm to respect the forest ecosystem and be easily placed
on a tree. The main part of the volume will be due to the storage element and the solar
cells.

• For a massive deployment, the cost cannot exceed 15 euros.
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Chapter 3

Energy storage

Energy storage has an important role in sensor applications. First, this role can be identified
as either a unique power for the application, or as a temporary storage of energy provided by
the energy harvester. In the framework of this thesis, the latter is considered since solar cells
(energy harvester) will bring energy to the system, which is stored in an energy storage element.

Then, one has to characterize the main figures of merits such as the energy density, the maximum
self-discharge and application conditions, as well as financial and environmental considerations.

A Ragone plot is typically used for comparing the energy density of various energy-storing
devices. On such a chart, the values of specific energy density (in Wh/kg) are plotted versus
specific power density (in W/kg). In Figure 3.1, one can see the trade-off between energy density
and power density. From fuel cells to supercapacitors by way of Li-ion batteries, energy density
is decreasing in aid of power density.

18 AUGUST 2006 VOL 313 SCIENCE www.sciencemag.org902

C
R

E
D

IT
S

: 
(P

H
O

T
O

) 
A

P
/R

O
B

 W
ID

D
IS

NEWS OF THE WEEK

When it comes to powering laptops and

hybrid cars, batteries get most of the attention.

But these gadgets and myriad others also con-

tain devices known as capacitors that provide

quick bursts of energy. Capacitors can’t store

as much power as batteries, but the latest

“supercapacitors” have started to close the

gap. Now, their storage capabilities may be

about to take another big jump.

In a report published online this week by

Science (www.sciencemag.org/cgi/content/

abstract/1132195), researchers from the

United States and France report that by care-

fully controlling the nanoscale structure of a

carbon-based supercapacitor, they’ve man-

aged to increase the amount of electrical

charges it can hold by about 50%. “It looks like

they’ve got something significant there,” says

John Miller, a physicist who runs JME Inc., a

supercapacitor materials evaluation company

in Shaker Heights, Ohio. If this performance

translates to commercial devices, it could help

manufacturers create smaller and cheaper

power packs for everything from cameras to

cars, Miller says. First, however, researchers

need to learn more about how it works.

Typically, a capacitor contains a pair of

electrodes surrounded by an electrolyte.

When a voltage is applied between the elec-

trodes, oppositely charged ions in the elec-

trolyte snuggle up to each electrode and

remain there even when the applied voltage

is turned off. When the two electrodes are

connected by a wire, electrons flow from the

negative electrode to balance the charges in

the positive electrode and do work en route. 

For many years, carbon has been the elec-

trode material of choice for supercapacitors

because it conducts electricity, is light, and

can be formed into a meshlike structure that

sops up ions like a sponge. The smaller the

pores in the material, the larger its surface

area and the more charge the capacitor can

hold—at least up to a point. When ions move

through an electrolyte, other molecules

attracted to their charge normally encircle

them like groupies mobbing a rock star.

Researchers have long thought that if the

pores in a carbon supercapacitor got too

small—below about 1 billionth of a meter, or

nanometer—the ion would not be able to

squeeze through with its entourage, and thus

the material’s overall ability to store charge

would drop. But because they had no way to

carefully control the pore size throughout a

large capacitor, they couldn’t test this notion.

Yury Gogotsi and his colleagues at Drexel

University in Philadelphia, Pennsylvania,

however, came up with a new way to do just

that. They started with one of several com-

mercially available compounds called a metal

carbide, a mixture of a metal such as titanium

and carbon. They then heated their material in

a furnace while exposing it to chlorine gas.

The gas reacted with the metal, forming

volatile compounds that could easily be sepa-

rated from the mixture, leaving behind carbon

shot through with a continuous mesh of voids.

By controlling the temperature and other con-

ditions in their reactor, the researchers found

they could tailor the holes in their carbon

mesh to be a uniform size, between 0.6 and

2.25 nanometers across.

When Gogotsi and his students meas-

ured the charge-storing capabilities of the

material, they got a shock. “We thought it

would be useless” to study the smallest

pores, Gogotsi says. But in powdered samples,

their carbon with the 0.6-nanometer pores

held 50% more charge than powders of stan-

dard supercapacitors. Gogotsi’s group later

teamed up with Patrice Simon, a leading

supercapacitor expert at the University of

Paul Sabatier in Toulouse, France, whose

lab confirmed the results.

On a molecular level, it appeared that

ions must be wiggling into the tiny pores, by

either squeezing their entourage ions or per-

haps abandoning them altogether. But how

that could happen remains a puzzle, Miller

says. In normal carbon supercapacitors,

ions nestling up to an electrode form a layer

about 1 nanometer thick. So if there is less

space than that in the pores of the new mate-

rial, it’s not clear how they can get in. “That

will be a bit controversial,” Miller says. But

both he and Gogotsi point out that thanks to

the newfound control over pore size,

researchers should quickly be able to figure

out just what is going on.

–ROBERT F. SERVICE

New ‘Supercapacitor’ Promises to
Pack More Electrical Punch
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Figure 3.1: Ragone plot showing specific energy versus specific power for various energy-storing
devices [14]
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In order to answer the previous requirements, common energy storage types are analyzed and
the most suited type for this work is detailed.

3.1 Primary batteries
Primary batteries are non-rechargeable, they thus have only one life cycle. However, they can
sometimes still have their place in IoT applications when the power consumption and the sensor
lifetime are particularly reduced. Primary batteries are mainly based on three technologies.

Zn-MnO2 batteries
Zn-MnO2 batteries are composed of a combination of metallic zinc (oxidation) and a manganese
dioxide electrode (reduction). They exist under the form of zinc-carbon cells and alkaline
batteries and differ according to the electrolyte inside.

The voltage window is between 0.9 V and 1.5 V. The energy density of a typical AA (approxi-
mately 8 cm3) zinc-carbon cell is 100 mWh/cm3, whereas a commercial alkaline cell reaches at
present up to 400 mWh/cm3 [15].

These batteries are very well known and low cost, but present a high self-discharge rate.

Lithium primary batteries
Lithium primary batteries have an anode made of metallic lithium and a cathode made of
several materials such as MnO2 or FeS2.

Batteries integrating MnO2 commonly deliver a total cell voltage of around 3 V. These batteries
work with the oxidation of lithium and reduction of manganese, with a typical energy density of
650 mWh/cm3.

The second type of lithium battery is based on FeS2. It has a practical voltage of 1.5 V
and is therefore compatible with alkaline and zinc-carbon cells. It has an energy density of
approximately 550 mWh/cm3.

Overall, it is able to deliver high currents and has a quite flat voltage profile upon discharging.
Moreover, it performs well at low temperatures and has a significantly lighter weight than
alkaline cells.

Zn-air batteries
Zn-air batteries are a class of batteries that employ metallic zinc particles as its anode and an
aqueous liquid electrolyte. With a voltage of 1.4 V, this battery is commercially available as
button cells with an energy density of around 1500 mWh/cm3.

Other disadvantages of this type of battery are that the catalyst that is required for the reduction
of oxygen usually consists of expensive noble metals and that the battery is unable to deliver
high peak currents. This type of battery is therefore commonly used in applications where only
low currents are required from a battery with a small volume [15].
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3.2 Secondary batteries
Secondary batteries are rechargeable, they thus have a certain number of life cycles (usually
more than 500). Only battery types that are suitable for the IoT domain are presented in this
thesis.

Batteries with liquid or polymer gel electrolytes
Nickel metal hydride batteries

Nickel metal hydride batteries (NiMH) combine nickel at the positive electrode and hydrogen
(metal hydride) at the negative electrode. During discharge, a proton, obtained from the
electrolyte, occurs in reduction of nickel oxyhydroxide. The loss of protons in the electrolyte
produces hydroxide anions which will recombine with a proton from the metal hydride.

The cells typically work at around 1.2 V, allowing interchangeability with alkaline batteries.
However, they have a higher self-discharge rate and a narrow temperature window (0 to 45 °C).
The energy density is around 250 and 380 mWh/cm3.

Li-ion batteries

Lithium-ion batteries are composed of lithium metal oxide at the positive electrode (LiCoO2)
and a material storing lithium in a neutral form such as graphite at the negative electrode. The
charge process is based on the motion of lithium ions from the metal oxide to the electrolyte,
where they are stored in graphite.

Compared to NiMH batteries, they have higher energy density (between 300 and 500 mWh/cm3),
lower self-discharge rate and larger temperature window (-20 to 60 °C). They are however easily
damaged in case of overdischarging or overcharging, thus requiring a special protective electric
circuit for the power management.

Overall, liquid electrolytes (both NiMH and Li-ion) have high volatility and have been the
source of explosions in lithium batteries. Research thus has been done on the design of solid
electrolytes.

Solid-state batteries
Solid-state batteries use solid electrodes and a solid electrolyte, such as ceramics (e.g. oxides,
sulfides, phosphates) or a solid polymer. They are potentially safer than batteries with liquid
electrolytes, with higher energy density, but at a much higher cost. However, these efforts have
faced a number of issues.

One of the biggest problems is that when the battery is charged up, atoms accumulate inside
the lithium metal, causing it to expand. These repeated changes in the metal’s dimensions make
it difficult for the solids to maintain constant contact, and tend to cause the solid electrolyte to
fracture or detach.

Another problem is that none of the proposed solid electrolytes are truly chemically stable while
in contact with the highly reactive lithium metal, and they tend to degrade over time.
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3.3 Supercapacitors
Supercapacitors are high-capacity capacitors storing energy in an electric field, rather than in a
chemical reaction, like batteries. This allows high power density for short-term energy storage1,
almost instant recharging and very long lifetimes. Made of porous carbon (electrodes) and liquid
salts (electrolyte) [16], they are not composed of harmful2 chemicals or toxic metals. Since the
supercapacitor is non-chemical, the voltage is free to rise until the dielectric fails (often in the
form of a short circuit). It is thus needed to avoid going higher than the specified voltage, which
is characterized by a lower voltage limit than for batteries.

Due to their behavior in between electrolytic capacitors and batteries, they are particularly well
suited for IoT applications. Indeed, they typically store 10 to 100 times more energy per unit
volume or mass than electrolytic capacitors. They can also accept and deliver charge much faster
than batteries, and tolerate many more charge and discharge cycles than rechargeable batteries.
Nevertheless, care needs to be paid to their significant leakage current which is proportional to
the capacitance of the supercapacitor.

Instead of using a conventional solid dielectric, supercapacitors use electrostatic double-layer
capacitance and electrochemical pseudocapacitance [17].

Electrostatic double-layer capacitors
Electrostatic double-layer capacitors (EDLCs) are the most common type of supercapacitors.
They use carbon electrodes or derivatives with much higher electrostatic double-layer capacitance
than electrochemical pseudocapacitance, achieving separation of charge in a Helmholtz double
layer at the interface between the surface of a conductive electrode and an electrolyte.

Electrochemical pseudocapacitors
Electrochemical pseudocapacitors use metal oxide or conducting polymer electrodes with a high
amount of electrochemical pseudocapacitance additional to the double-layer capacitance. They
store charge chemically through redox reactions where one species transfers electrons to another,
similar to a battery. While pseudocapacitors store more energy, their widespread use has been
hampered by their narrow electrochemical voltage window, which is the voltage range where
the electrode materials are stable.

Additionally, there exist hybrid capacitors, such as the lithium-ion capacitors, using electrodes
with different characteristics: one exhibiting mostly electrostatic capacitance and the other
mostly electrochemical capacitance.

3.4 New developments
Promising new methods are also developed in research laboratories, some of them are detailed
hereafter.

1They can provide very high currents during a short time.
2Failing in a nice way, they will never overrun or start a fire.
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3D electrodes for electrochemical energy storage
Superior energy or power density for batteries is typically achieved only in ultra-thin electrodes
with low mass loadings. To realize the full potential of these electrode materials, new electrode
architectures allow more efficient charge transport beyond the limits of traditional electrodes.
Working on the design and synthesis of 3D electrodes is promising to address charge transport
limitations in thick electrodes. Such 3D porous architectures could enable composite electrodes
with an unprecedented combination of energy and power densities [18].

In addition to the recent development of Li-ion batteries with flexible, bendable, or foldable
characteristics, some research has been focused on batteries with advanced features of stretcha-
bility in which the systems are able to accommodate large mechanical strain and still maintain
their functions. Such sponge-inspired electrodes for stretchable Li-ion batteries show no specific
capacity reduction when bent, unlike the cells using conventional electrodes [19].

Lithium metal anode
Recent research has been achieved on lithium metal anodes that could improve the longevity
and energy density of future batteries [20].

Most attempts to overcome the problems of solid-state batteries have focused on designing solid
electrolyte materials that are absolutely stable against lithium metal, which turns out to be
difficult. Instead, some researchers adopted an unusual design that utilizes two additional classes
of solids, “mixed ionic-electronic conductors” (MIEC) and “electron and Li-ion insulators” (ELI),
which are absolutely chemically stable in contact with lithium metal.

They developed a three-dimensional nanoarchitecture in the form of a honeycomb-like array of
hexagonal MIEC tubes, partially infused with the solid lithium metal to form one electrode
of the battery, but with extra space left inside each tube. When the lithium expands in the
charging process, it flows into the empty space in the interior of the tubes, moving like a liquid
even though it retains its solid crystalline structure. This flow, entirely confined inside the
honeycomb structure, relieves the pressure from the expansion caused by charging, but without
changing the outer dimensions of the electrode or the boundary between the electrode and
electrolyte. The other material, the ELI, serves as a crucial mechanical binder between the
MIEC walls and the solid electrolyte layer.

3.5 Shape
In addition to the electrical and thermal characteristics, the form of the storage element is
particularly important for IoT devices where the full sensor size is often limited. The main
trade-off thus appears between the charge capacity and the size of the energy storage element.

The main shapes of micro-batteries are button cells, pouch cells and thin film batteries.

3.6 Comparison
Table 3.1 presents the main figures of merit for the previously described types of energy storage.
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Capacitors Batteries
Ceramic Electrolytic Supercap Non-rechargeable Rechargeable

EDLC Alkaline NiMH Lithium ion
Power density [W/g] > 100 2 – 10 2.5 – 10 1 – 3
Energy density [mWh/g] 0.1 [21] 0.01 – 0.3 5 60 – 120 120 – 240
Self-discharge rate [per month] 100% 100 h 50% < 0.3% 0.08 – 2.9% 5%
Leakage current 1 – 100 nA/µF 2 – 5 fA/µF [22] [23] 5 µA [21]
Service life [years] 25 [21] 15 10 – 15 5 – 10 5 –10
Life cycles unlimited [21] unlimited 1 000 000 1 180 – 2000 500
Degradation negligible -80% in 10 years -50% in 500 cycles
Charge time 1 – 10 s 10 – 60 min
Cell voltage [V] 4 – 630 2.3 – 2.75 1.5 1.2 3.6
Charge T° [°C] -40 – 70 -40 – 65 0 – 45
Discharge T° [°C] -40 – 70 -40 – 65 -20 – 60
Discharge efficiency 99% 95% 66% – 92% 90%
Toxicity low middle

Table 3.1: Comparison of various types of energy storage

In this table, the life cycle is the number of complete charge/discharge cycles that the battery
is able to support before its capacity falls under 80% of its original capacity. Although the
deployment of such sensors would imply the fabrication of several thousands of energy storage
elements, the impact of the toxicity is small for such projects lasting more than 20 years without
replacement. The degradation corresponds to the decrease of its maximum energy storage
throughout its life.

Another factor of merit is the overall efficiency, which is computed as

η = EO

EI

where EO is the energy delivered during the whole life of the energy storage element, and EI
is the total energy fed to the storage element, composed of both the fabrication energy and
the recharge energy. It is difficult to compute this efficiency due to the lack of information
about the fabrication energy (typically not given by manufacturers). However, Li-ion batteries
(50.17 kWh/kg for electric vehicles [24]) generally require more manufacturing energy than
supercapacitors.

Criticality
To assess the criticality of energy storage elements, one needs to consider the environmental
and societal impacts combined with their scarcity. The scarcity of an element is assessed by
the variation of its availability on Earth between the past decades and nowadays (not to be
confused with rare-earth elements which are not critical). They include components overused
for electronic devices such as copper, gold, silver, lithium and cobalt.

For Lithium-ion and NiMH batteries, the following compounds are used:

• Positive electrode: metal oxide compounds such as lithium extracted from brine or rock,
nickel, cobalt, hydrogen-absorbing alloy (nickel alloys with many metals: V, Ti, Zr, Ni,
Cr, Co, Al and Fe)

• Negative electrode: graphite (carbon-based)
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• Electrolyte

One can thus see that many critical and polluting compounds appear in the positive electrode.

For EDLCs, the following compounds are used:

• Electrodes: porous carbon (activated carbon, carbon nanotubes and carbon aerogels) built
from graphite [25]

• Electrolyte: liquid salts (water with ions)

• Polymeric membrane forming a microporous layer as separator

Supercapacitors are thus mainly built from carbon, one of the most abundant elements on Earth.
They are far less toxic and resource-intensive than metal-based batteries.

3.7 Selection
Building upon these results, a supercapacitor is chosen because of its high lifetime, low toxicity,
low criticality and reasonable energy density. As detailed in the Ragone plot (Figure 3.1), this
energy storage element can deliver high currents but stores less energy per volume. Its substantial
leakage current is also needed to be further taken care of. The sizing of this supercapacitor will
be achieved in Chapter 7.3 once the whole power consumption is fully determined.
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Chapter 4

Power management

The purpose of power management is to harvest energy from solar cells, store it in a superca-
pacitor, and deliver it to the circuit through a stable voltage supply. In this section, the best
supply voltage is determined and the power management unit is explained.

4.1 Operating voltage design
First, the supply voltage is used to power the sensing subsystem and the MCU/transceiver chip.
For practical and energy efficiency reasons, the same supply voltage is selected for the whole
system.

Since the microcontroller uses a low-dropout (LDO) regulator to regulate its internal voltage,
the current consumption is independent from the supply voltage. In order to minimize the power
consumption, one thus needs to use the lowest supply voltage. However, using a low supply
voltage decreases the AFE amplification gain and therefore the precision (i.e. the signal-to-noise
ratio) on the microphone signal that will be read at the input of the MCU. Indeed, while the
noise at the sensing output is roughly independent from the amplification gain of the sensing
subsystem (see the proof in Section 5.2), the signal power is reduced with the gain. Hence, this
trade-off leads to the selection of a 2.5 V supply voltage which lies in the 2.2 V – 3.6 V range of
the CMWX1ZZABZ chip.

4.2 Power management unit
A power management unit (PMU) is an integrated energy management circuit that extracts
DC power from solar cells to simultaneously store energy in a rechargeable element and supply
the system with independent regulated voltages. An AEM10941 chip from e-peas is selected
because of its ultra-low power consumption and the close relations between the university and
the company (see Figure 4.1).
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AEM10941
PV cell

SRC

5 V MAX

Primary
battery

(optional)

PRIM

5 V MAX

Storage element

• Li-ion cell
• Solid state battery
• NiMH battery
• Supercapacitor
• Dual-cell supercapacitor
• Capacitor
• LiFePO4 battery
• ...

BATT

4.5V MAX

Your circuit

HVOUT
4.2V-1.8V
80mA

LVOUT
1.8V\1.2V
20mA

Figure 1: Simplified schematic view

1 Introduction

The AEM10941 is a full-featured energy efficient power man-
agement circuit able to charge a storage element (battery or
supercapacitor, connected to BATT) from an energy source
(connected to SRC) as well as to supply loads at different op-
erating voltages through two power supplying LDO regulators
(LVOUT and HVOUT).
The heart of the AEM10941 is a cascade of two regulated
switching converters, namely the boost converter and the
buck converter with high-power conversion efficiencies (See
Page 18).
At first start-up, as soon as a required cold-start voltage of
380 mV and a scant amount of power of just 3 µW available
from the harvested energy source, the AEM coldstarts. After
the cold start, the AEM can extract the power available from
the source as long as the input voltage is comprised between
50 mV and 5 V. Note that the minimum voltage for the cold
start may be set by adding resistors (see Page 12).
Through three configuration pins (CFG[2:0]), the user can se-
lect a specific operating mode from a range of seven modes
that cover most application requirements without any dedi-
cated external component. Those operating modes define the
LDO output voltages and the protection levels of the storage
element. Note that a custom mode allows the user to de-
fine his own storage element protection levels and the output

voltage of the high-voltage LDO (See Page 11).
The Maximum Power Point (MPP) ratio can be configured
using two configuration pins (SELMPP[1:0]) (See Page 12).
Two logic control pins are provided (ENLV and ENHV) to dy-
namically activate or deactivate the LDO regulators that sup-
ply the low- and high-voltage load, respectively. The status
pin STATUS[0] alerts the user that the LDOs are operational
and can be enabled. This signal can also be used to enable an
optional external regulator.
If the battery voltage gets depleted, the LDOs are power gated
and the controller is no longer supplied by the storage element
to protect it from further discharge. Around 600 ms before
the shutdown of the AEM, the status pin STATUS[1] alerts
the user for a clean shutdown of the system.
However, if the storage element gets depleted and an optional
primary battery is connected on PRIM, the chip automatically
uses it as a source to recharge the storage element before
switching back to the ambient source. This guarantees con-
tinuous operation even under the most adverse conditions (See
Page 10). STATUS[1] is asserted when the primary battery is
providing power.
The status of the MPP controller is reported with one dedi-
cated status pin (STATUS[2]). The status pin is asserted when
a MPP calculation is being performed.
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Figure 4.1: AEM10941 simplified schematic view [26]

Its characteristics are given in Table 4.1, by only considering the high voltage regulator. The
very low quiescent current is nearly independent from the supercapacitor voltage.

Max input current 110 mA
Max input voltage 5 V
Output voltage 1.8 V – 4.1 V
Max output current 80 mA
Max supercap charge 4.5 V
Min dropout supercap – output voltage 0.3 V
Quiescent current 0.6 µA

Table 4.1: Characteristics of the AEM10941 PMU

Storage element and LDO configuration
Configuration pins determine various operating modes by setting predefined conditions for the
energy storage element (overcharge or overdischarge voltages) and by selecting the voltage of
the high-voltage supply and the low-voltage supply. The low-voltage supply is not used and
the high-voltage supply is set to 2.5 V. These characteristics correspond to a preset state in
the chip, which helps reduce internal losses by not using additional resistors to select a custom
configuration. The three configuration pins CFG[2], CFG[1] and CFG[0] are thus set to 0, 1 and
1, corresponding to the charge of a dual-cell supercapacitor charged in the range 2.8 V – 4.5 V
in order to power the low-voltage and high-voltage supplies at 1.8 V and 2.5 V, respectively.

Additionally, three status pins allow monitoring the PMU, whose one informs about superca-
pacitor overdischarge. For a first prototype, connecting this pin to a LED can be useful to
deduce the supercapacitor state, but it is not used in the final model to further reduce power
consumption (which is non-negligible for typical LEDs, around 1 mA).

21



Maximum power point tracking
The efficiency of power transfer from the solar cell depends on both the amount of sunlight
arriving on the solar cells and the electrical characteristics of the load. As the amount of sunlight
varies, the load characteristic that produces the highest power transfer efficiency changes, so
that the efficiency of the system is optimized when the load characteristic changes to keep the
power transfer at highest efficiency. Maximum power point tracking (MPPT) is thus used by the
PMU by means of a boost converter regulating its input voltage so that the electrical current
that enters the boost converter yields the best power transfer from the harvester under any
ambient conditions (see Section 7.2 for more details about the intrinsic principle of solar cells).

This PMU uses the open-circuit voltage algorithm, the simplest MPPT control method. It
consists to set the voltage at a constant ratio of the open-circuit voltage VOC. By temporarily
disconnecting the source from the PMU, the MPPT module maintains knowledge of VOC. It
then sets the MPPT voltage at VMPPT depending on VOC and the ratio (70%, 75%, 85% or 90%)
selected in hardware via two headers connected to the configuration pins. A typical MPPT
ratio leading to the maximum power is 76% [27], but it will be refined experimentally in the
validation section. Still, the main disadvantage of this method is that there is momentary power
loss due to the disconnection of the load from the solar cells for the sampling of its open-circuit
voltage.

Boost conversion efficiency
The energy converted from the solar cells to the supercapacitor (called boost voltage) is not
fully converted due to the internal boost converter efficiency. As depicted in Figure 4.2 for a
typical harvested current of 10 mA, the efficiency is maximum when the input voltage VSRC is
0.4 V below the output voltage VBOOST (see Table 4.2).
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Figure 14: Boost efficiency for Isrc at 100 µA, 1 mA, 10 mA and 100 mA

10.2 Quiescent current
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Figure 15: Quiescent current with LDOs on and off
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Figure 4.2: Boost conversion efficiency (solar cells – supercap) of the AEM10941
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VSRC VBOOST Efficiency
2.2 V 2.6 V 92%
3.2 V 3.6 V 95%
3.7 V 4.1 V 96%

Table 4.2: Values of maximum efficiency for the src – boost conversion with a 10 mA input
current

Since the source voltage impacts both the boost conversion efficiency and the harvested power
(see previous paragraph), the optimal source voltage needs to be determined. Based on Figure 4.2,
the efficiency significantly falls when the source voltage exceeds its optimal voltage. The source
voltage thus needs to stay below VBOOST − 0.4 V at all times, corresponding to 2.4 V for this
work (supply voltage of 2.5 V implying a supercap voltage of at least 2.8 V). In this case, it is
thus expected to reach a boost efficiency of 92% whatever the supercap voltage. Finally, the
maximum source voltage set to 2.4 V might be slightly relaxed if the IV curve of the solar cells
provide a significant power increase at a higher source voltage (see Section 7.2).

High-voltage LDO regulation
As shown in Figure 4.3, the PMU supply voltage depends on the load current drawn by the
sensing and MCU/RF subsystems. It decreases from 2.5 V without load to 2.43 V at the
maximum load (that is, 80 mA). Although this voltage variation might impinge upon the
signal reading at the ADC input of the microcontroller, no voltage regulation needs to be
taken into account inside the MCU code. Indeed, both the signal voltage Vin,ADC from the
microphone and the ADC supply voltage VDD vary likewise, this leads to the same digitized
number bVin,ADC/VDDc.
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Figure 16: HVOUT at 3.3 V and 2.5 V
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Figure 17: LVOUT at 1.2 V and 1.8 V
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Figure 4.3: High-voltage LDO regulation at 2.5 V in function of the load current
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Finally, the LDO efficiency can be simply calculated as Vout/Vin (same input – output current)
if the quiescent current (0.6 µA) can be neglected with regards to the output current. The
hyperbolic curve in Figure 4.4 confirms the 1/Vin dependence of the efficiency on Vin. It is thus
advised to work at the lowest supercap voltage (i.e. 2.8 V) by selecting a supercapacitor with a
similar operation voltage range.
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Figure 18: HVOUT efficiency at 1.8 V, 2.5 V and 3.3 V

The theoretical efficiency of a LDO can be simply calculated as Vout
Vin if quiescent current can be neglected with regards to the

output current. In the case of the high-voltage LDO, the theoretical efficiency is equal to Vhv
Vbatt .
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Figure 19: Efficiency of BUCK cascaded with LVOUT at 1.2 V and 1.8 V

The theoretical efficiency of the low-voltage LDO is equal to Vlv
Vbuck . Starting from the battery, the efficiency of the buck

converter has to be taken into account (see Figure 4). The efficiency between Vbatt and Vlv is therefore equal to ηbuck
Vlv

Vbuck .
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Figure 4.4: High-voltage LDO efficiency at 2.5 V in function of the load current
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Chapter 5

Sensing subsystem

Sound waves are generated by the variation of a physical characteristic, the pressure. This
deviation propagates via vibrations in the environment in such a way that sound can be measured
by a microphone from a distance of the source.

Sound waves are often described in terms of sinusoidal plane waves (see Figure 5.1). Hence,
they have a direction of propagation, a speed v, a frequency f and an amplitude A.

x

y

z
v

A

Figure 5.1: General sound wave description

The amplitude of sound pressure corresponds to the loudness of a sound and is typically expressed
as the root mean square (RMS) amplitude, called sound pressure level (SPL). Let the RMS
sound pressure be p = A/

√
2 for sine waves, the SPL amplitude is given by

Lp = 20 log10

(
p

p0

)
' 20 log10(p) + 94 [dBSPL]

where p0 = 20 µPa is the reference RMS pressure (hearing threshold of humans at 1 kHz).

Additionally, the sound SPL amplitude changes over the distance (from r1 to r2) according to
the propagation law of spherical waves:

Lp2 = Lp1 + 20 log10

(
r2

r1

)
[dBSPL].

Table 5.1 gives typical sound pressure levels.
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Source of sound Distance Sound pressure [dB]
Jet engine 1 m 150
Trumpet 0.5 m 120
Traffic on busy road 10 m 90
Passenger car 10 m 70
Quiet room ambient 25

Table 5.1: Typical sound pressure levels

In this work, the sensor is required to detect the song of a bird (around 50 dBSPL at 1 m of the
source) located 50 m away. The minimum detected sound pressure is thus

Lpmin = 50− 20 log10(50) = 16 dBSPL.

Sound production from several bird species have been measured up to 95 dBSPL and are generally
greater for larger birds [28]. The sensor thus needs to detect sounds of at least

Lpmax = 95− 20 log10(50) = 61 dBSPL.

The frequency range of human hearing is often reported to be between 20 and 20 000 Hz, but
the ability to hear higher frequencies decreases with age. For this reason, a correction, called
A-weighting, is applied to instrument-measured sound levels to account for the relative loudness
perceived by the human ear as a function of the frequency (see Figure 5.2).
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Figure 5.2: A-weighting curve

Many bird songs have frequency ranges between 1 kHz and 8 kHz, which places them in the spot
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of human hearing. However, some birds can produce sounds at frequencies1 as low as 23 Hz [29]
or as high as 15 kHz [30]. Since the presented sensor aims to mainly analyze bird sounds, it has
to match the frequency specifications ranging between 20 Hz and 20 kHz.

In the end, the characteristics of the sound wave at the sensor are summed up in Table 5.2.

Pressure range 16 – 61 dBSPL
Frequency range 20 – 20000 Hz

Table 5.2: Sound wave characteristics at the sensor

As depicted in Figure 5.3, the sensing subsystem is composed of a microphone and a signal
conditioning circuit called analog front-end. This block handles the signal transmission from
the input sound pressure detected by the microphone to an analog voltage Vmic,ADC further
processed by a microcontroller.

Analog
Front-EndMicrophone

Imic,AC
Vmic,ADC

Figure 5.3: Block diagram of the sensing subsystem

5.1 Microphone
A microphone is a device that converts sound into an electrical signal (also called transducer).
Generally, they mimic the inner workings of human ear by using a diaphragm which vibrates
with the sound pressure. There exist several types of microphones for which the most important
characteristics, called figures of merit, need to be compared.

Main types of microphone
Microphones are categorized by their transducer principle, corresponding to the way they detect
the variation of input sound pressure.

Carbon microphones

Carbon microphones were the first created type of electrical microphone. They are based on the
variation of electrical resistance between two plates due to the motion of a diaphragm on one of
these plates. This type of microphone is less used because of its limited frequency response and
high noise level (background and crackling noise [31]).

1One might also want to assess the impact of moving birds on the frequency. For this purpose, the Doppler
effect characterizes the frequency f perceived at the sensor node compared to the emitted frequency fs of the
bird when it moves at speed vs. The relative variation of frequency is given by f/f0 = v

v±vs
where v is the sound

velocity (343 m/s in ambient conditions). For a typical bird velocity (12 m/s), the equation provides a relative
variation of ±4 %, which corresponds to a small (but non-negligible) impact on the perceived frequency.
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Optical microphones

Optical microphones use the moving diaphragm as a reflection plate for the light of a laser.
The intensity of the light, depending on the deformation of the diaphragm, is converted to
an electrical signal through a photodiode. Their high power consumption (more than 5 mW,
5.4 mW in [32]) prevents them from being used in IoT applications.

Condenser microphones

Condenser microphones are based on a parallel-plate capacitor for which one of the plates is the
diagram. For a fixed charge Q on the capacitor, the voltage across the capacitor varies with the
capacitance according to

V = Qd

εA

where s is the distance between the plates, A is the area of the plate, and ε is the electric
permittivity of the medium inside the plates.

This type can be further divided in active and passive condenser microphones.

Active condenser microphones require biasing circuitry to charge the capacitor and perform first
stage amplification. In this group belong microelectromechanical systems (MEMS) microphones
which are small package condenser microphones made using semiconductor production techniques.
Typically, they already integrate an ADC inside. The small size and the rather low power
consumption (10 µW to 1 mW [33], [34]) of MEMS microphones are ideal for IoT applications.

Passive condenser microphones do not require biasing of the capacitor. For instance, condenser
electret microphones have an electret material as diaphragm, a material that has a permanent
electrical charge on it. Passive microphones are also appealing for their low power consumption
and reduced complexity.

Piezoelectric microphones

Piezoelectric microphones directly translate the sound pressure into a voltage by means of
a piezoelectric crystal, which redistributes the charges in the crystal under a deformation.
They can be packaged in MEMS microphones and have a low power consumption (about
300 µW [35]). However, their high impedance makes them sensitive to electrostatic pick-up of
hum2, which decreases its performance in the presence of mains-powered audio equipment or
AC electromagnetic fields from nearby appliances.

Inductive microphones

Inductive microphones are passive microphones working via electromagnetic induction. The
vibrations of the diaphragm move a permanent magnet through a coil, inducing an electrical
current. They are generally less sensitive, especially at picking up high frequencies and short,
detailed sounds. They are also unable to pick up distant sounds laterally and from the back of
the microphone, which may lead to flatter audio (unidirectionality). They are thus not suited
for this application.

2Mains hum is a sound associated with alternating current at the frequency of the mains electricity (50 Hz).
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Figures of merit
In order to select the most suited type of microphone for this application, one has to characterize
the main figures of merit related to a microphone.

Power consumption

For both active and passive microphones, the operation current and voltage are of essential
importance in IoT applications. The standard operation voltage Vmic (also called bias voltage) is
the voltage needed by the microphone to operate with full functionality, so that the microphone
can amplify and record signals fully. The maximum current consumption is often specified
to provide a rough upper limit. However, one is more interested in the measurement of the
microphone IV curve which allows deducing the operation current Imic at the operation voltage.

Sensitivity

Sensitivity is the electrical response at the microphone output to a given standard acoustic
input. The standard reference input signal for microphone sensitivity measurements is a 1 kHz
sine wave at 94 dBSPL, or 1 Pa. It is expressed in V/Pa or in dB.

Signal-to-noise ratio

In the microphone’s framework, the signal-to-noise ratio (SNR) specifies the ratio of a reference
signal to the noise level of the microphone output. Brought back to the input, the SNR is the
difference in decibels between a standard 1 kHz, 94 dBSPL reference signal and the microphone
pressure noise3. It is an image of the noise generated inside the microphone, called self-noise.
Expressed in dBSPL, the self-noise acts like a theoretical external noise source placed at the
input of an ideal microphone. The relation between the self-noise and the SNR is thus given by

SNR = 94− self-noise [dB].

The SNR is calculated by measuring the noise output of the microphone in a quiet, anechoic
environment. This specification is typically presented over a 20 kHz bandwidth as an A-weighted
value.

Frequency response

The frequency response describes the output level across the frequency spectrum. The high and
low frequency limits are described as the points at which the microphone response is 3 dB below
the reference output level at 1 kHz, which is customarily normalized to 0 dB. As for the SNR,
the frequency response characterization requires precise measurements in anechoic chamber.
Typical microphone frequencies lie in the human hearing range.

3The microphone SNR is independent from the input sound pressure. It should not be confused with the
typical definition of the SNR, which provides the power ratio between the input signal and the noise at a specific
stage of a conditioning chain.
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Directionality

Directionality describes the pattern in which the microphone sensitivity changes when the sound
source changes position in space. Most of the analyzed microphones are omnidirectional.

Finally, the main figures of merit associated with a microphone are summarized below:

• Imic: rated current (in A),

• Vmic: rated voltage (in V),

• S: sensitivity from the input sound pressure to the output voltage (in dB),

• SNRmic: signal-to-noise ratio (in dB),

• the frequency range (in Hz),

• the directionality,

• and the operating temperature (in °C).

Microphone type selection
IoT devices are limited by their size, cost and energy requirements. Table 5.3 quantitatively
summarizes the two main characteristics for each type of microphone.

Type Reference Noise [dBSPL] Power cons. [µW]
Condenser (MEMS) ICS-40720 24 570
Condenser (Electret) AOM-5024L-HD-R 14 420
Piezoelectric PMM-3738-WP-R 33 300

Table 5.3: Comparison of several types of microphone

A piezoelectric microphone is not considered due to its sensitivity to electrostatic pick-up of
hum. MEMS and electret condenser microphones are very similar and well suited for this
application, but MEMS microphones already have the amplification circuit inside. Finally, an
electret condenser microphone is selected for this work since it allows a precise design of the
amplification circuit, optimizing the whole noise and power consumption.

Electret condenser microphone selection
Considering the main figures of merit stated above, Table 5.4 compares several state-of-the-art
electret condenser microphones.

The AOM-5024L-HD-R microphone has been selected since it surpasses the others in terms of
the most important parameters, the self-noise (related to the SNR) and the sensitivity, while
roughly keeping the same power consumption. With its self-noise of 14 dBSPL, it is in fact the
only microphone that allows staying below the 16 dBSPL limit for the minimum detectable sound
wave.
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ABM-707-RC CMC-6027-24L100 AOM-5024L-HD-R
Current [µA] 500 500 500
Voltage [V] 1.5 2 2
Sensitivity [dB] -41 -24 -24
SNR [dB] 60 70 80
Output impedance [Ω] 2.2 2.2 2.2
Frequency range [Hz] 50 – 16000 100 – 20000 20 – 20000
Temperature [°C] -20 – 60 -20 – 70 -30 – 70

Table 5.4: Comparison of several electret condenser microphones

However, one has to characterize more precisely the current and voltage characteristics because
the values given in the datasheets are very general (current of 500 µA and voltage of 2 V). The
IV curve of the AOM-5024L-HD-R and the ABM-707-RC4 is given in Figure 5.4.
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Figure 5.4: IV curve of several microphones

In order to select the best operating voltage, one has to find a trade-off between keeping a low
voltage (and thus a low power consumption) and having a sufficient sensitivity by retaining
the microphone transistor in saturation. Finally, the operating point given in Table 5.5 for
the AOM-5024L-HD-R will be considered in the following. One can sadly notice a power

4The ABM-707-RC, which was initially available in the laboratory, served as a first measurement to characterize
the microphone and the analog front-end.
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consumption slightly higher than the reference microphone, this model remains the best suited
because of his high precision (the self-noise of the reference microphone is too high to be
considered in this work).

Current Imic 358 µA
Voltage Vmic 2 V

Table 5.5: Operating point of the AOM-5024L-HD-R microphone

5.2 Analog front-end
Once the microphone type is selected, one can analyze in more detail the working principle
of electret microphones. The voltage variation across the electret capacitor varies with the
capacitance, acting as an AC-coupled voltage source. Because the charge on the microphone
capacitor must be fixed, the amplifier circuitry directly in contact with it must have extremely
high input impedance, such that no charge can flow through the amplifier circuit.

For this reason, most electret microphones have an internal junction field-effect transistor (JFET)
which buffers the microphone capacitor. The voltage signal produced by sound modulates the
gate voltage of the JFET (VG), causing a change in the current flowing between the drain and
source of the JFET (Imic). An extremely high resistance may be included to bias the gate of
the JFET, but parasitic resistance in the microphone PCB will be sufficient in this work.
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Figure 5.5: Microphone and analog front-end circuit
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The amplification circuit presented in Figure 5.5 is typical for condenser electret microphones [36].
It allows converting the microphone current IAC into an output voltage Vmic,ADC which sweeps
the input of a further ADC.

The current in the microphone Imic has a DC component (IDC, characterized in the previous
section) necessary to put the internal JFET in the saturation region, and an AC component
(IAC) caused by sound waves. If the impedance of capacitor C1 is much less than R1 at audio
frequencies, then IAC will flow through C1 and not R1. The op-amp acts as a transimpedance
amplifier, and attempts to hold its inverting input at a constant voltage VB by varying its
output. The resistors and capacitors of the circuit will be further designed such that, in the
audio sound frequency band, C2 and C3 are open-circuited, and C1 is short-circuited. In this
case, the output voltage of the op-amp is simply given by

Vmic,ADC = R2 IAC + VB [V]

in this frequency band (see Appendix A for details).

Because capacitor C1 is chosen to have a very low impedance at audio frequencies, the voltage
at the drain of the microphone JFET (VDS) varies very little, potentially reducing distortion
caused by channel length modulation in the JFET. This makes the circuit very convenient since
the drain current Imic only depends on the JFET gate voltage VG, and not the constant voltage
VDS (due to the channel length modulation, also called Early effect).

Designing this amplification circuit requires more attention than for the microphone since it
induces consequent noise which is mainly due to the operational amplifier. The next computations
will introduce a trade-off between the noise reduction and the power consumption of common
operational amplifiers.

Amplification circuit design
The parameters of the AOM-5024L-HD-R microphone selected for this design are summed up
in Table 5.6 with the experimental current measurements.

Op. current Imic 358 µA
Op. voltage Vmic 2 V
Sensitivity Smic,dB −24 dB
SNR SNRmic 80 dB
Impedance RL 2.2 kΩ
Frequency range 20 Hz – 20 kHz
Temperature −30 °C – 70 °C

Table 5.6: Characteristics of the selected microphone: AOM-5024L-HD-R

The microphone self-noise is given by pSN,dB = 14 dBSPL and pSN = 100 µPa. Since the
microphone outputs a current (and not a voltage) depending on the input pressure, a load
impedance RL has been used to convert the current sensitivity towards the voltage sensitivity.
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Gain calculation

First, the dB value of the sensitivity must be converted to a linear value, which is

SV,mic = 10Smic,dB/20 = 63.1 mV/Pa

expressed in volts per Pascal of air pressure.

Because the preamplifier is a transimpedance type, this must be converted to a value of current
per Pascal of air pressure. It can be converted thanks to the microphone impedance, which was
used to measure the microphone sensitivity. The output current per Pascal of air pressure is

SI,mic = SV,mic

RL,mic
= 28.7 µA/Pa.

Then, one has to map the minimum detected input sound pressure to the minimum detected
output voltage of the amplifier.

The minimum input sound pressure, determined at the beginning of the chapter, is given by

Lp,min = 16 dBSPL ⇒ pmin = p0 10Lp,min/20 = 126 µPa,

which is expressed in RMS value. It corresponds to a minimum drain current in the microphone
of

Imic,min,RMS = SI,mic pmin = 3.63 nA.
The minimal output voltage depends on the ADC resolution of the microcontroller unit. The
STM32L072 has a 12-bit resolution and the operating voltage VCC is 2.5 V (see Section 4.1).
The ADC voltage resolution is thus

VADC,res = VCC

212 = 610 µV.

In order for the input signal to be read with sufficient precision (6 bits) by the ADC, it has to
vary higher than 26 VADC,res. Based on Figure 5.6, one can deduce the minimum RMS voltage:

26 VADC,res = 2
√

2VADC,RMS ⇒ VADC,RMS = 24√2VADC,res = 13.8 mV

or VADC,RMS = −37.2 dBV.

t

26 VADC,res √
2 VADC,RMS

VADC(t)

Figure 5.6: Resolution and RMS values of ADC voltage

Then, one can compute the transimpedance gain, which maps the RMS values of the input
current to the output voltage:

R2 = VADC,RMS

Imic,min,RMS
= 3.81 MΩ.
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The maximum microphone RMS current appears when the ADC voltage is maximum:

Imic,max,RMS = VCC/(2
√

2)
R2

= 232 nA,

corresponding to a maximal input sound pressure of

pmax = Imic,max,RMS

SI,mic
= 8.1 mPa ⇒ Lp,max = 20 log10

(
pmax

p0

)
= 52.1 dBSPL.

The input spreads from 16 dBSPL to 52.1 dBSPL, giving a variation of 36.1 dB. It is worth noting
that, when expressed in dB, the input variation is exactly equal to the 6-bit output variation5

since
20 log10

(
26
)

= 36.1 dB.
Thereby, there is a trade-off between the number of bits dedicated to the minimum ADC signal
(6 bits) and the input pressure range (6 bits) since they sum to the ADC resolution (12 bits).
Still, the maximum input sound pressure of 52.1 dBSPL suits quite well the requirements of this
work, for which a louder sound is rarely produced by birds (about 60 dBSPL at the source [37]).

Figure 5.7 depicts the three main variables of the sensing subsystem expressed in dB scale: the
input sound pressure p, the microphone voltage Vmic and the output voltage VADC. The output
ADC voltage has been fixed by the microcontroller specifications. The minimum input sound
pressure, expressed both in dB and dBSPL, has then been mapped to the minimum ADC voltage.
In turn, it fixed the maximum input sound pressure since the input pressure range has the same
length as the output voltage range previously set.

The only remaining degree of freedom for the microphone and amplification circuit lies in the
relative position of the scale in between, characterizing the microphone voltage Vmic. This
voltage is obtained from the input sound through the microphone sensitivity Smic,dB, and is
converted to the ADC voltage through the voltage gain of the amplification circuit:

GV,dB = VADC,RMS

Vmic,RMS
= R2 Imic,RMS

Vmic,RMS
= R2

RL
[dB].

Since the input/output relation is given by

pdB + Smic,dB +GV,dB = VADC,RMS [dB],
16 dB− 94 dB + Smic,dB +GV,dB = −37.2 dB,

the scale of the microphone voltage needs to be adapted according to

Smic,dB +GV,dB = 40.8 dB.

This relation is useful for a parallel optimization of both the microphone and amplification
circuit aiming at selecting the best noise/current consumption characteristic. However, the
previous microphone selection has fixed the sensitivity at −24 dB and directly leads to a voltage
gain of 64.8 dB.

5This is the difference between the bit resolution of the ADC (12) and the number of bits used for the
minimum detectable signal (6).
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Finally, the figure highlights that the self-noise for this microphone (14 dBSPL) is below the
minimum input sound pressure. Brought back to the input pressure domain, the AFE noise will
also be computed and added to this intrinsic microphone noise.
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Figure 5.7: Range of p, Vmic and VADC along the dB scale

The feedback capacitor C2 compensates for parasitic capacitance at the op-amp inverting input
which can cause instability. It also forms a high frequency pole with resistor R2 in the response
of the amplifier. According to the frequency range specified for the input sound pressure, the
frequency of this pole must be fH = 20 kHz. The feedback capacitor value can then be calculated
as

C2 = 1
2π fH R2

= 2.09 pF.

Microphone bias resistor and coupling capacitor

The internal JFET of the electret microphone being biased by resistor R1, the value of this
resistor can be calculated from the desired supply voltage (VCC), the microphone operating
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voltage (Vmic) and the current consumption (Imic):

R1 = VCC − Vmic

Imic
= 2.38 kΩ.

Resistor R1 and capacitor C1 form a high-pass filter, the corner frequency of this filter must be
low enough not to attenuate low-frequency sound waves. As specified in the input frequency
range, a corner frequency of fL = 20 Hz is used to calculate the value of C1:

C1 = 1
2π fL R1

= 3.34 µF.

One can see that reducing R1 (for a higher and thus better microphone operating voltage)
requires a larger capacitance (implying more space and cost).

Operational amplifier

The required slew rate of the amplifier can be determined by calculating the maximum rate
of change at the op-amp output, arising for a sine wave at fmax = 20 kHz and an amplitude of
VCC/2 which sweeps the full output range. For sine waves, it can be shown6 that the slew rate
is computed as

SR = 2πfmax
VCC

2 = 0.188 V/µs.

As a conservative rule, it is advised to select ten times this slew rate to eliminate any possibility
of slew-induced distortion, which is very important in the analysis of audio data. This sets the
required slew rate to 1.88 V/µs.

The op-amp is selected such that it adds negligible noise to the output of the amplification
circuit, avoiding the degradation of the data processing. However, such low-noise operational
amplifiers consume a lot of power. One thus has to analyze and compare several state-of-the-art
op-amps in order to choose the one which suits the best this noise/power consumption trade-off
for this application.

The related op-amp parameters that need to be well selected are the current consumption
(quiescent current IQ), the input current noise spectral density IN and the input voltage noise
spectral density ENV.

The ADC voltage noise at the output is based on three noise contributions. The first noise is
the thermal noise from resistors R1 and R2:

ENR =
√

4 kB T (R1//R2) = 6.26 nV/
√

Hz

where T = 300 K is the temperature and kB = 1.38× 10−23 J/K is the Boltzmann constant.

The second noise contribution is the op-amp input current noise:

ENI = IN (R1//R2)
[
V/
√

Hz
]
.

The last noise supply is due to the op-amp input voltage noise ENV.
6This is the highest slope of a sine function, appearing when the signal crosses 0.
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The output noise spectral density, for non-correlated contributions, of the amplifier circuit is
then given by

EN,ADC = AN

√
E2

NR + E2
NI + E2

NV

[
V/
√

Hz
]

for which
AN = 1 + R2

R1
= 1602

is the noise gain of the op-amp (see Appendix B for details). Since the signal gain is directly
determined by R2, it cannot be changed. On the other hand, a very low supply voltage VCC
decreases the value of R1, which increases the noise gain of the op-amp. Hence, the noise/power
consumption trade-off also appears in the design of R1.

Finally, the RMS output noise voltage can be computed by multiplying the output noise spectral
density by the square of the bandwidth of integration (spreading over an A-weighting curve).
An A-weighting curve can be approximated using a 13.5 kHz noise bandwidth BA, the RMS
output noise voltage is thus (in RMS value)

VN,ADC =
√
BA EN,ADC [V].

This noise contribution is then brought back to the input pressure domain, the input-referred
noise from the AFE is thus given by

pIRN,AFE = VN,ADC

R2 SI,mic

=
√
BA

R2 SI,mic

(
1 + R2

R1

)√
4 kB T (R1//R2) + I2

N (R1//R2)2 + E2
NV [Pa].

One can directly see that this noise is roughly independent from the gain R2 since (1 +
R2/R1)/R2 ' 1/R1 in our design and the contribution from IN is typically negligible compared
to E2

NV.

Since the total input-referred noise is composed of non-correlated sources (from the microphone
pSN and the AFE pIRN,AFE), their noise powers add up to give

pIRN =
√
p2

SN + p2
IRN,AFE [Pa].

Figure 5.8 presents this input-referred noise with respect to the current consumption for several
operational amplifiers. Clearly, the input-referred noise must not exceed the minimum signal
sound pressure of 16 dBSPL.

The ultra-low-power LMV551 op-amp has a quiescent current of only 37 µA, but the input-
referred noise of 17.85 dBSPL exceeds the minimum detectable input pressure. In order to keep
the noise voltage not much detected from the ADC, the input-referred noise typically needs to
be smaller than the minimum input signal (as depicted in Figure 5.9).

The OPA2834 has an input-referred noise of pIRN,OA = 14.22 dBSPL while keeping a particularly
small current consumption of 170 µA. One finally selects this op-amp since it has the lowest
noise in the group of three op-amps which belong to an acceptable range of quiescent current
(from 100 µA to 200 µA).
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Figure 5.8: Comparison of input-referred noise and current consumption for several operational
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Figure 5.9: Voltage noise and resolution at the amplification output

In the end, the OPA2834 op-amp characteristics are given in Table 5.7. The slew rate of 26 V/µs
is well above the limit of 1.88 V/µs.

Criteria Required OPA2834 Units
Supply voltage 2.5 2.5 – 5.4 V
Quiescent current < 200 170 µA
Input voltage noise < 27 12 nV/

√
Hz

Input current noise N/A 0.2 pA/
√

Hz
Slew rate > 1.88 26 V/µs

Table 5.7: Characteristics of the selected operational amplifier: OPA2834
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AFE noise voltage

The noise voltage from the AFE can be theoretically computed over an A-weighting curve of
bandwidth BA = 13.5 kHz as

VN,ADC,theor =
√
BA EN,ADC = 2.52 mV

where EN,ADC depends on the voltage and current noise of the OPA2834.

As a validation of the amp op selection, Figure 5.10 describes the noise voltage spectral density
at the amplification output. This noise is the combination of flicker (or 1/f) noise and thermal
(flat band) noise. Hence, it depends on the frequency and is higher for frequencies below the
1/f corner frequency: 150 Hz for the voltage noise and 900 Hz for the current noise, as given in
the op-amp datasheet. Since audio signals contain frequencies that are particularly low, the
noise is sadly impinged by flicker noise. For a frequency of 22 Hz, the noise reaches 37 µV/

√
Hz.

Since the noise contribution from the microphone is not represented in the simulation, this
simulated noise can be compared to the theoretical value of the AFE noise (2.52 mV). Due
to the frequency dependence, one needs to integrate the noise power spectral density over the
whole frequency range in order to obtain the output noise voltage:

VN,ADC,simu =
√∫ ∞

0
EN,ADC(f)2 df = 2.37 mV.

As expected, the result is very similar to the theoretical one, hence not impinging the previous
conclusions for the choice of the best operational amplifier.
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Figure 5.10: Noise voltage spectral density from AFE at the amplification output (from LTspice)
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Total noise voltage

One can then compute the total noise voltage VN,tot,theor at the amplification output, resulting
from the microphone noise and the AFE noise:

VN,tot,theor = pIRN R2 SI,mic = 11.2 mV.

Op amp bias network

Resistors R3 and R4 center the op-amp input and output at the midpoint between the power
supplies to allow the widest possible output signal swing. Therefore R3 = R4 for VB = VCC/2.
The value of these resistors needs to be very high in order to limit the power supply current
drawn by this voltage divider. However, the non-zero op-amp input bias current prevents the
bias voltage VB to be exactly at VCC/2, and this variation worsens with the resistance of the bias
resistors. A reasonable choice consists to set a maximum bias voltage relative variation of 0.5%:

∆VB = 1
2 R3 Ib+ < 0.005VB ⇒ R3 < 0.01 VCC

2Ib+
= 179 kΩ

where Ib+ = 70 nA for the selected op-amp. A final value of

R3 = R4 = 150 kΩ

is finally chosen, which implies a current in the voltage divider of approximately

IB = VCC

R3 +R4
= 8.33 µA.

This current is small (less than 5%) compared to the microphone bias current, and is a good
trade-off between the power consumption and the bias voltage stability.

Capacitor C3 is included to filter thermal noise created by the resistors and any noise which
may be present on the power supply. The corner frequency of the low-pass filter is formed by
R3, R4 and C3. It should be well below the operating frequency range in order to prevent noise
from affecting the audio performance of the design. A corner frequency of fB = 5 Hz is selected:

C3 = 1
2π fB (R3//R4) = 424 nF.

Summary

Table 5.8 summarizes the theoretical values for the amplification circuit as well as the values
actually put on the experimental device depending on the available components.
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Value
Theoretical Real

R1 2.38 kΩ 2.37 kΩ
R2 3.81 MΩ 3.83 MΩ
R3 150 kΩ 150 kΩ
R4 150 kΩ 150 kΩ
C1 3.34 µF 3.3 µF
C2 2.09 pF 2 pF
C3 424 nF 470 nF

Table 5.8: Final values for the amplification circuit

Figure 5.11 presents the AC transfer function of the amplification circuit from the input
pressure to the output voltage, which confirms a bandwidth ranging from 20 Hz to 20 kHz. The
important phase variations (with additional poles) are due to the intrinsic behavior of the
electret microphone.
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Figure 5.11: AC transfer function of the amplification circuit (from LTspice)

As stated before, the classical trade-off between noise and power consumption was not worth
considering in the microphone selection since the other microphones suffer from too high noise.
However, if the constraint on the minimum detectable sound wave were relaxed, the choice of
the microphone and operational amplifier would have to be optimized conjointly by computing
the input-referred noise and power consumption of the whole sensing subsystem.
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Chapter 6

Data processing and transceiver

Data are processed in a microcontroller and received/transmitted in a transceiver. For this work,
a CMWX1ZZABZ chip from Murata is used, which combines an STM32L072 microcontroller
and an SX1276 transceiver. Its operation voltage range is 2.2 V – 3.6 V.

6.1 Microcontroller
The STM32L072 is an ultra-low-power microcontroller incorporating an Arm Cortex-M0+ 32-bit
RISC core operating at a 32 MHz frequency, with embedded memories (192 Kbytes of Flash
program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM), a 12-bit ADC with
hardware oversampling,. . . It operates from a 1.8 V to 3.6 V power supply [38].

ADC characteristics
A 12-bit analog-to-digital converter (ADC) has been used to digitize (sampling and quantization)
two signals: the analog microphone voltage and supercap voltage. The resolution of an N -bit
ADC is given by VDD/2N where VDD is the supply voltage. One might be interested to improve
the ADC resolution up to 14 bits via diverse techniques (such as SAR, etc). This would allow
the reading of a smaller input sound pressure (12 dB below) and make possible to process a
sound pressure of 4 dBSPL (increasing the detectable distance between the sensor and the source).
However, the signal quality would not benefit from this increased ADC resolution because the
microphone self-noise is still 14 dBSPL.

A typical code alternates between an energy-intensive run mode (to sample sound) and a
low-power sleep mode. The duty cycle between these modes will be determined in the section
characterizing the power consumption (Section 7.1).

Status of supercapacitor charge
In order to know the status of the supercapacitor charge and adapt the MCU code to a possible
overdischarge, the ADC reads the supercap voltage. Since this voltage is higher than the ADC
supply voltage, a voltage divider is required. The supercap voltage is thus divided by two with
two resistors RSC of same resistance, which has to be determined according to the impedance
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recommendations at the ADC input. Provided in the datasheet, the maximum input impedance
for an error below 1/4 of LSB is given by (derived from the charge equation of the internal
sample-and-hold capacitor)

RAIN,max = TS

fADC CADC ln(2N+2) −RADC = 257 kΩ

where TS = 160.5 is the number of cycles per sample, fADC = 8 MHz is the ADC clock frequency,
CADC = 8 pF is the internal sample-and-hold capacitor, N = 12 is the number of resolution
bits and RADC = 1 kΩ is the sampling switch resistance. To increase RAIN,max and thus reduce
power consumption, parameters such as TS and fADC are pushed towards a low sampling
frequency fs = fADC/TS equal to 49.8 kHz in this case (the delay between each sampling being
not important since the supercapacitor undergoes low variations).

Because RAIN,max corresponds to RSC/2, one selects a resistance RSC of 475 kΩ. This value
produces a negligible current consumption of

ISC,ADC = VSC

2RSC
= 4.7 µA

in the worst-case scenario when the supercapacitor is fully charged at 4.5 V.

Finally, the ADC input leakage current provided in the datasheet is maximum Iin,ADC = 50 nA.
The ADC voltage due to the non-zero input current is thus (VSC − RSC Iin,ADC)/2 instead of
VSC/2, leading to a maximum relative error of

Erel = RSC Iin,ADC

VSC
= 0.85 %

in the worst-case scenario when the supercapacitor is fully discharged (2.8 V). This error is
negligible.

6.2 Transceiver
The SX1276 transceiver features a LoRa long-range modem that provides ultra-long range
spread spectrum communication [39]. LoRa has been increasingly used in the IoT domain
thanks to their compromise between range, interference immunity and energy consumption [40].
The transceiver chip is connected to an external ISM (industrial, scientific and medical purposes)
antenna in the range 790 MHz – 960 MHz.

The receiver is used for over-the-air (OTA) updates and thus implies that the MCU has
reconfiguration capabilities to keep up with application, security and communication protocol
updates. During such updates, the challenge is the instantaneous power consumption when the
wireless radio is in receive mode and the microcontroller is reprogramming its internal Flash
memory (recall that the maximum current consumption at the PMU output is 80 mA and that
the energy storage is very limited). To lower this peak power, a smart decomposition of the
firmware packets is required.

The transmitter is used to send data to a gateway, mainly information about the analyzed input
sound pressure and hence bird species. All data are handled in the RAM memory of the MCU,
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but important data that need to be transmitted are stored in the FLASH memory in order to
prevent them from being erased after an unexpected shutdown.

The radio-frequency communication for this smart sensor, including power consumption and
security in LoRaWAN networks, has been carefully discussed and optimized in a concurrent
master thesis [41].
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Chapter 7

Power supply

In this chapter, the total current consumption is evaluated. The solar cells and supercapacitor
are then sized accordingly.

7.1 Power consumption
The power consumption will be computed separately for each block. Since the voltage regulator
inside the PMU is an LDO, the current drawn in the circuit is the same as the current drawn in
the supercapacitor. For each subsystem, it thus makes sense to provide the current consumption
I instead of the power consumption since the latter is higher from the supercap point of view
(VSC I) than from the subsystem point of view (VDD I).

Sensing
As seen in Figure 5.5, the current consumption from the sensing subsystem is composed of

• the current through the microphone branch (with R1): Imic = 358 µA (see Table 5.5),

• the op-amp quiescent current: IQ = 170 µA,

• and the current through the voltage divider with R3 and R4 to bias the op-amp: IB =
8.33 µA.

This leads to a current consumption of Isensing = 536 µA.

Power Management
The current consumption of the power management subsystem is composed of

• the leakage current of the supercapacitor: typically IQ,SC = 500 µA (will be refined in
Section 7.3),

• the voltage divider to read the supercap voltage at the ADC input ISC,ADC = 4.7 µA,

• and the PMU quiescent current: IQ,PMU = 0.6 µA.

This leads to a current consumption of Ipower = 505 µA.
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Data processing and transceiver
For this part, it is possible to adapt the code in the microcontroller to match the best capabilities
of the system. In view of the power consumption from the previous parts and the typical harvested
power from solar cells, one will aim to keep the MCU/RF consumption below 4 mA.

First case without transceiver

As a first approximation, a run mode that only processes data is considered (that is, without
transmission or reception). A typical scheme for this application is to alternate a run mode and
standby mode.

Addressing a simple scheme allows using a simulation tool (Wisebatt) in order to estimate
the power consumption. As seen in Figure 7.1a, Wisebatt estimates the run mode at 2.74 mA
and the standby mode at 3.64 µA. With a duty cycle of 1/3, one obtains an average current
consumption of

iavg = 1
3 2.74 mA + 2

3 3.64 µA = 0.913 mA.

By assuming that it takes 50 ms to sample and process the data, it leads to a cycle duration
of 150 ms. However, the simulation tool misses the FFT operation that is achieved inside the
microcontroller, which significantly reduces the current consumption in run mode. To refine
this poor model, experimental measurements of the current consumption have been achieved
(see Figure 7.1b). With a duty cycle of 1/3, they show an average current consumption of
3.88 mA since the run mode consumes 10.1 mA. An MCU current consumption of 3.88 mA will
be kept as reference for designing further components, it allows keeping a precise track of the
input sound wave (one third of the time at high run/sleep cycle frequency) with sufficiently low
power consumption. It is worth noting that the increase in current consumption before each
sleep mode is due to the microcontroller which saves the data by writing in its registers (and
write operations consume more than the read operations appearing at the beginning of each run
mode).
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(b) Experimental results

Figure 7.1: Current consumption of the CMWX1ZZABZ without TX/RX
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Second case with transceiver

Now, one considers the power consumption related to the transceiver part. First, Figure 7.2
shows the current consumption for sending one packet of 51 bytes, with a peak current of
49.5 mA for 130 ms. One verifies that this peak current never exceeds the maximum output
current of 80 mA from the PMU (see Table 4.1).
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Figure 7.2: Current consumption for sending one packet of 51 bytes

Second, data reception is characterized through an over-the-air firmware update (FUOTA).
Figures 7.3 show the current consumption of a typical FUOTA.
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(b) Packets processing

Figure 7.3: Current consumption for a FUOTA
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The first figure corresponds to the packet reception (in Class-C1) with a constant current of
12 mA. Only a part of the consumption is shown, it has a periodic profile during 259 s.

The second figure is related to the packet processing of the FUOTA, composed of three steps:
hash computation of the received fragment to ensure its validity (i.e. no data corruption during
the transmission), computation of the reverse delta (i.e. the firmware that has changed), and
computation of the new firmware image based on the previous image and the delta.

Receiving and processing the packets consume 14.1 mA on average for 301 s, that is an energy
of 10.6 J. Since the update period is flexible, it is achieved when the device does not process
audio data (i.e. during the night). Provided that the sensor is able to sustain the amount of
energy as well as the maximum power, over-the-air updates (which are less common) are not
taken into account in the power budget hereafter.

Total power consumption
Table 7.1 summarizes the power budget for the whole system. As expected, the most energy-
intensive part is the microcontroller and radio-frequency subsystem.

Current [mA]
Data processing 3.88
Power management 0.50
Sensing 0.54
Total 4.92

Table 7.1: Description of the theoretical power consumption in the system

Depending on the supercapacitor voltage, the total power consumption finally varies linearly
between 13.8 mW (at 2.8 V) and 22.1 mW (at 4.5 V) according to Ptot = VSC Itot.

7.2 Solar cells
Solar cells are electrical devices that convert the energy of light into electricity by the photovoltaic
effect. The current generated by such cells is decreasing with the voltage. It leads to a maximum
of the harvested power (see Figure 7.4), which is called the MPP (for Maximum Power Point).

The main figures of merit for solar cells are thus the current and voltage at the maximum power
point, as well as the surface area since the goal is to maximize the harvested power per unit
area and thus minimize the area on the PCB. It is worth noting that the current and power are
provided at one sun (1 mW/mm2), and the power is the electric power generated by the solar
cells.

1Class-C endpoints use the most power but have the shortest latency.
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Figure 7.4: IV and PV curves of a typical solar cell: SM141K06L

A great advantage of solar cells is their ability to combine them easily in series (doubling the
voltage) or in parallel (doubling the current), provided that the total voltage does not exceed
the voltage limit of 5 V of the power management unit. Based on the comparison depicted in
Table 7.2 between three cells of different sizes, the SM141K06L model is selected for its high
power per unit area of 0.1905 mW/mm2. Alternatively, this electric power per unit area can be
validated by computing the product between the sun intensity and the efficiency of the solar
cells (approximated to 25% in the datasheet compared to 19.05% computed here).

KXOB25-14X1F SM141K06L SLMD481H08L
Current [mA] 55 55.1 178
MPP Voltage [V] 0.56 3.35 4
Power [mW] 30.7 184 714
Surface [mm x mm] 23× 8 42× 23 89× 55
Power per unit area [mW/mm2] 0.1668 0.1905 0.1459

Table 7.2: Comparison of several solar cells

This model is a set of six single solar cells in series, raising the MPP voltage from 0.56 V to
3.35 V. Figure 7.4 provides the IV/PV curves for one of the single cells.

Now that the cell with the best power par unit area is selected, the following of this section
is dedicated to the computation of the required number of such cells in order to daily provide
enough energy to the whole circuit via the supercapacitor. For this purpose, a model of the
harvested energy from the sun is required.
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Illuminance
The luminosity profile over a whole day needs to be measured in order to estimate the harvested
solar energy. For this purpose, a light meter (model testo 540 ) has been used2. It is a precise
light sensor but the measurement is only shown on a screen, preventing the user to continuously
record the data over a whole day. Figure 7.5 thus presents the measurements made at regular
intervals in a shady place of Louvain-la-Neuve (to replicate a place similar to a forest). The
weather was cloudy, which gives an illuminance very near the worst-case scenario and hence
allows the solar cells to be selected based on the darkest days.
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Figure 7.5: Daily luminosity (Louvain-la-Neuve, from March 3 to March 6, 2020)

These data are extremely variable, mainly due to the motion of clouds. A polynomial regression
of second order L(t) allows better representing the trend over a day (in dashed blue).

The data have been taken during days with 11 hours of sunlight (averaged between March 3
and March 6, 2020) while the sensor has to work under smaller periods of sunlight (down to
eight hours in the winter [42]). Assuming that the daily harvested energy is proportional to
the duration of sunlight, the following computations will be done accordingly by horizontally
shrinking the graph by 8/11 (in red).

More rigorously, one should also shrink the graph vertically since the sunlight is weaker in
winter. Indeed, the same incoming sunlight is distributed over a larger area at higher latitudes
(see Figure 7.6). However, scaling the device to the very worst-case scenario (less than 10% of

2Smartphone applications such as Physics Toolbox also exist but provide imprecise results.
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the year) is not advisable since it would imply significant overscaling (of the solar cells and
supercapacitor). Consequently, the microcontroller algorithms will be less resource-intensive
during the winter in order to match the specifications of energy harvesting and storage, which
is coherent with the fact that fewer birds are active during this period.

Figure 7.6: Sunlight towards Earth at the equinox [43]

Power conversion
From this solar energy, solar cells generate a current which is proportional to the illumi-
nance. Most of the solar cell datasheets provide an IV curve at a fixed illuminance of
1 sun = 1× 103 W/m2. Since 1 lux = 0.0079 W/m2 for the solar spectrum, the harvested
current Icell(t) from one solar cell is given by

Icell(t)
Lsun(t) = I1sun

1 ⇒ Icell(t) = I1sun Lsun(t) = 0.0079× 10−3 I1sun L(t) [A]

where L(t) and Lsun(t) are the instantaneous illuminance (resp. expressed in lux and sun) and
I1sun is the current generated at the MPP under 1 sun (provided in the datasheet).
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Figure 7.7: Daily view of the harvested power with SM141K06L solar cells

For the selected solar cells, Figure 7.7 gives the harvested power throughout the day3:

Pcell(t) = Icell(t)Vcell = 0.0079× 10−3 I1sun Vcell L(t) [W]

with Vcell = 3.35 V and I1sun = 55.1 mA.
3As mentioned previously, notice that the graph is shrunk such that the day benefits from sunlight during

only eight hours.
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Charge of the supercapacitor
The next paragraphs will discuss how the power management unit transforms the input and
output powers with two different voltage regulators.

The input power charging the supercapacitor from the solar cells is independent from the
supercapacitor voltage. Indeed, the voltage at the maximum power point is converted to
the supercap voltage through a boost converter with efficiency ηboost,PMU = 92 % derived in
Section 4.2. The input power is thus

Pin,solar(t) = n¢ell Icell(t)Vcell = 1
ηboost,PMU

Iin,SC(t)VSC(t) [W]

where n¢ell is the number of solar cells required for the device, Iin,SC(t) is the input current
through the supercapacitor and VSC(t) is the voltage across the supercapacitor.

Regarding the power consumption, the PMU converts the supercapacitor voltage to a constant
voltage VCC = 2.5 V via a low-dropout (LDO) regulator. Neglecting the quiescent current, LDOs
keep the same current while the voltage is reduced. The output power is thus reduced, this
is why it is important to maintain a small dropout (voltage difference between the input and
output). Hence, the output current is independent from the supercapacitor voltage and not the
output power since the ratio of output power fed to the circuit over the output power actually
retrieved from the supercapacitor is given by

Pout,circuit

Pout,SC
= Iout VCC

Iout VSC
= VCC

VSC
.
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Figure 7.8: Input power and output current for six solar cells and a typical profile of cyclic
consumption

In the end, Figure 7.8 depicts the input and output variables which are independent from
the supercapacitor voltage: the input power and the output current. These are thus the only
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quantities which can be plotted without measuring the supercapacitor voltage. The input power
is given with six solar cells. One verifies that it never reaches the maximum PMU input power
of 550 mW (see Table 4.1).

The output current has the cyclic profile from the MCU analyzed in Figure 7.1b on which a
current consumption of 1.04 mA has been added for the remaining of the system (as computed
in Table 7.1). Since the following components are designed for the worst-case scenario, the
input power is not sufficient to maintain the microcontroller in operation at night. It is thus
limited to a typical time window of bird activity (from 7 h to 17 h). When days have longer
sunlight time, the device will receive more energy and thus either support longer processing
periods (up to 24 h per day) or allow more frequent radio-frequency communication (for both
data transmission and firmware update).

First-order non-linear differential equation for the supercapacitor voltage

Having two different physical quantities (the power and the current) conserved when the super-
capacitor voltage changes leads to slightly more complicated computations of the supercapacitor
voltage over one day4. The rigorous approach consists to write the equation for the charge of a
capacitor:

dVSC

dt = 1
C

(Iin,SC(t)− Iout,SC(t))

= 1
C

(
ηboost,PMU

Pin,solar(t)
VSC(t) − Iout,SC(t)

)

= 1
C

(
ηboost,PMU n¢ell Icell(t)

Vcell

VSC(t) − Iout,SC(t)
)

which is a non-linear first-order differential equation for the variable VSC(t). Nonetheless, one
can notice that the equation is written as

dVSC

dt = f(VSC, t)

where f(VSC, t) is a function of VSC and t. It can thus be easily solved numerically for example
via the forward Euler method:

VSC(t+ dt) = VSC(t) + dt f(VSC(t), t)

= VSC(t) + dt
C

(
ηboost,PMU n¢ell Icell(t)

Vcell

VSC(t) − Iout,SC(t)
)
.

4Having the input and output currents independent from the supercapacitor voltage would lead to the simple
equation:

VSC(t) = VSC(t0) + 1
C

∫ t

t0

(Iin,SC(t)− Iout,SC(t)) dt.

Likewise, having the input and output powers independent from the supercapacitor voltage would lead to the
equation:

ESC(t) = ESC(t0) +
∫ t

t0

(
Pin,SC(t)− Pout,SC(t)

)
dt

where ESC = C V 2
SC/2 to obtain the voltage.
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starting with VSC(t0) = VCC+0.3 = 2.8 V which is the minimum voltage across the supercapacitor
due to a minimum dropout of 0.3 V. The value t0 is thus the time for which the supercapacitor
begins to charge, in other words, when the input power starts to exceed the output power:
ηboost,PMU n¢ell Icell(t0)Vcell = Iout(t0)VSC(t0).

Finally, Figure 7.9 depicts the numerical solution of the supercapacitor voltage throughout the
day for three different numbers of cells. At night, the voltage is linearly decreasing due to the
stable current consumption of the sensing and power subsystems. When the microcontroller
is activated in the morning, a wavy and amplified diminution appears until the sun provides
enough energy to recharge the supercap voltage in the middle of the day. One can see the small
ripple due to the sharp transitions of the consumed current when the microcontroller alternates
between run and sleep mode.

The number of cells is chosen to come back to the minimum voltage after one day (close the
loop). If there are not enough cells, the voltage will fall below this minimal voltage and the
circuit will be shut down during a few hours. If there are too many cells, the voltage will be
higher day after day, which is useless and not efficient due to the preference of low dropout
when using LDO. The maximum input power of the PMU could also be reached during peak
sun illuminance, which will break the component. The optimal number of cells is thus six, as
the red curve in Figure 7.9 is perfectly suited for the current consumption.
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Figure 7.9: Voltage across the supercapacitor for three numbers of cells
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7.3 Supercapacitor sizing
Although the size of the supercapacitor appears inside the charge equation in the previous
computations, its impact is small compared to the impact of the number of solar cells. This small
impact comes from the charge equation stating that C changes the slope of VSC(t) (applying
only a vertical stretching of the curve). This increase in supercap voltage induces a higher
dropout in the output voltage conversion, decreasing the efficiency of the regulation. It is then
required to size the supercapacitor such that the maximum voltage set by the PMU (4.5 V) is
never exceeded.

Figure 7.10 provides the simulation results for three different capacitances. One can first see
that the maximal voltage is reached for C = 50 F but it fails to be active during one day since
the voltage drops below the 2.8 V (its operation near the maximum voltage produces many
power losses in the LDO), the minimum capacitance for this work is thus between 50 F and
100 F.
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Figure 7.10: Voltage across the supercapacitor for three different capacitances

A common (and possibly the only one in Europe) manufacturer for such high capacitances is
Vishay, it has a broad range of supercapacitors from 4 F to 90 F and from 1.8 V to 8.4 V. The
minimal voltage matching the specifications of this work is 4.2 V since the operating voltage
range must lie inside the PMU range (2.8 V to 4.5 V). Table 7.3 provides a comparison between
the two best solutions: a supercapacitor of 90 F and a set of four supercapacitors of 15 F.
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MAL219690101E3 MAL219691213E3 (×4)
Capacitance [F] 90 15× 4 = 60
Rated voltage [V] 4.2 4.2
Leakage current [µA] 500 120× 4 = 480
Volume [mm x mm x mm] 35× 26.5× 15 (14× 10× 12)× 4
Cost [$] 19.16 8.93× 4 = 35.72

Table 7.3: Comparison of several supercapacitors

As shown in Figure 7.11, these typical supercapacitors present a linear discharge under constant
current only locally in a range between 4.4 V and 5.4 V (for a 5.6 V supercapacitor). Below
4.4 V, the supercap voltage drops very fast and falls below its operation voltage. Selecting a
capacitance of 5.6 V would thus not allow the PMU, limited to 4.5 V, to charge the supercap in
its operating voltage range. Even if it is below the 4.5 V of the PMU, a 4.2 V supercapacitor is
thus required to work in the range where most of the energy is actually stored (between 3.1 V
and 4 V). One can finally notice that the leakage current is not negligible, making this type of
supercap unsuited for ultra-low-power devices (sub-mW total power consumption).

196 HVC ENYCAP™
www.vishay.com Vishay BCcomponents

  

 

Revision: 07-Jun-2019 12 Document Number: 28409
For technical questions, contact: hybridstorage@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 25 - Constant Current (CC) with V-Limit Charging Method at RT
Typical Charge / Discharge Characteristics at RT: 90 F / 5.6 V

Fig. 26 - Constant Current (CC)-Constant Voltage (CV)
Charging Method at RT

Typical Charge / Discharge Characteristics at RT: 90 F / 5.6 V

Note
• Charge and discharge cycles at room temperature (RT) - maximal 50 000 cycles at room temperature allowed!

Notes
• Capacitor is polarized, product will be damaged if reverse charged
• Voltages higher than specified need to be avoided; otherwise reduction of life time, internal gas generation or damage of HVC hybrid 

capacitor will occur
• For other operating temperatures, a temperature derating factor has to be considered for correct charging voltage
• Surge voltage is only allowed a few seconds per day, but not as a charging process
(1) n... number of cells

DERATING
Working voltage at temperatures above 60 °C should be below rated voltage UR. A derating-factor of -1.5 mV/°C per cell is 
recommended.

PRODUCT AND MOUNTING CHARACTERISTICS
Attention: parts are pre-charged at delivery - handle appropriate.

At delivery products are pre-charged and voltage over terminals is near nominal voltage. Short circuiting of product terminals 
is permitted. Do not short circuit permanently. Short circuiting of charged cells may heat up the cells.

For printed circuit board mounting it has to be taken into account, that for certain form factors top and bottom of products may 
not be insulated.

Capacitor disposal methods should be in accordance with local and state regulations.
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Figure 7.11: Constant current charge and discharge: 90 F / 5.6 V [23]

The all-in-one supercapacitor of 90 F is selected because its capacitance is 50% higher and its
cost is lower with not much additional leakage current and space on the board. It thus allows
more power consumption (namely processing in the microcontroller) during periods of higher
sunlight without saturating the supercapacitor voltage. Based on Figure 7.10, it is expected
that the voltage follows the red curve and thus reaches a peak at 3.8 V.

Figure 7.12 gives the voltage split for a 90 F / 4.2 V supercap, which perfectly fits into the PMU
and supply specifications.
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Figure 7.12: Voltage split for a 90 F / 4.2 V supercap coupled with the AEM10941
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Chapter 8

Final model

8.1 Description
Figure 8.1 presents the electronics diagram of the final model, it summarizes all the blocks
previously analyzed and characterized.

Sensing

Power
management

Processing and RF

CMWX1ZZABZ

STM32L072CZY6

SX1276 ANT

ADC
12bit

UART 
(Debug)

GPIO 
(Debug)

SWD 
(Prog)

V_mic,ADC

V_batt

VDD_MCU

VDD_RF

Analog Front-EndMicrophone

Energy manager
AEM10941

Supercap

Solar cells

Voltage 
divider

Figure 8.1: Electronics diagram of the final model

The final model is a stack of two boards: a board for data processing and radio frequency on
top of a board for sensing and power management.

8.2 Design
The design of the final model is given in Figure 8.2. One can see the six solar cells, the
supercapacitor in blue, the microphone in light gray, as well as five headers for current/voltage
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measurements. The components are placed such that the solar cells receive the maximum of
sunlight.

(a) Without MCU/RF board (b) With MCU/RF board

Figure 8.2: Pictures of the final model

Prototyping
The PCB schematic and layout are available in Appendix C.

8.3 Validation
This section describes the experimental results obtained with the real device.

Power consumption
The current consumption measured in the different parts is given in Table 8.1. These measure-
ments have been made with a Source Measure Unit: Keithley 2400 [44].

Current [µA]
Supercap leakage 95
Sensing 904
PMU 50
MCU 470
Total 1645

Table 8.1: Description of the current consumption in the system

When the supercapacitor is fully disconnected, a leakage current of 95 µA is noticed, which is
indeed below the maximum value of 500 µA in the datasheet.

In the AFE, the microphone consumes 380 µA. The op-amp consumes 524 µA, which is more
than expected since it has two channels. One should have chosen an op-amp with only one
channel.
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As given in the datasheet, the PMU quiescent current is less than 60 µA (50 µA).

The current consumption for a basic code in the MCU (FFT operations without RF and duty
cycle run/deepsleep mode of 10%) is 470 µA, corresponding to a run mode consuming 4.7 mA.
It is approximately the result obtained in the theoretical section.

Solar cells
Table 8.2 compares the harvested power from the solar cells in function of the MMP ratio
under a fixed interior lighting. The voltage is fixed by the SMU while it measures the current.
The highest power is achieved at 70% of the open-circuit voltage (4.15 V), which is selected
in hardware via a header connected to the PMU. For low supercap voltage (below 3.3 V), this
2.9 V MPPT voltage will not lead to the best PMU efficiency since it exceeds the 2.4 V derived
in Section 4.2, but the gain in solar power at this MPP compensates for the loss of efficiency.

MPPT ratio Voltage [V] Current [mA] Power [mW]
70% 2.9 20.2 58.6
75% 3.11 17.9 55.7
85% 3.53 11.1 39.1
90% 3.73 3.5 13.1

Table 8.2: Harvested power from the solar cells in function of the MMP ratio

Table 8.3 gives the harvested current under different lighting from the solar cells at the MMP
voltage (2.9 V). Since the data were taken at noon, they show more harvesting energy than for
the theoretical analysis (see Figure 7.5).

Current [mA]
In the shade 30
Cloudy 50
Sunny 105

Table 8.3: Harvested current under different lighting from the solar cells at the MMP voltage

Supercapacitor
Figure 8.3 needs to be compared to Figure 7.11, it provides the supercapacitor discharge under
a constant current of 500 mA after being charged to its maximum voltage (4.2 V) and kept
at this voltage for 30 minutes (as recommended in the datasheet). It can be noted that the
voltage is around 3.1 V for the most important part of the operation, which is beneficial since
the LDO in the PMU has a low dropout in this case (and thus a good efficiency). Additionally,
the supercapacitor is not in operation under 2.5 V, which proves that the best type of DC-DC
converter for this application is an LDO (and not a buck-boost converter which would allow
stepping up the voltage as well). The total energy stored in this 90 F/4.2 V supercapacitor is

61



computed as
ESC =

∫ ∞
0

PSC(t) dt = Idischarge

∫ ∞
0

VSC(t) dt = 851.6 J

and is slightly different from the usual equation describing the energy in a capacitor: Ecap =
C V 2/2 = 793.8 J.
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Figure 8.3: Supercapacitor discharge under a constant current of 500 mA

Sound analysis
Pure sine wave

To validate the sensing subsystem, a first test is achieved with a pure sine wave at 1 kHz
generated from a laptop speaker. Figure 8.4 presents the results in the time and frequency
domains. This sound is fully detected by the microcontroller, with a sharp peak at 1 kHz in the
spectral domain. The voltage decrease is probably due to the ADC discharging the node by
drawing some current when it samples the signal.
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Figure 8.4: Analysis of a pure sine wave at 1 kHz

Noise
Figure 8.5 shows a digitized signal under a quiet environment in order to determine the intrinsic
noise of the sensing system. The RMS noise value, in terms of LSBs, is given by

ERMS =
√

1
N

∑
n

(
x[n]− E[x]

)2
= 23.6 LSBs

where N is the number of samples, x[n] is the n-th ADC digitized value and E[x] is the
mean of x. This value can be compared to the theoretical value, ERMS = 18.7 LSBs since
VN,tot,theor = 11.2 mV and one LSB is VCC/212 = 0.6 mV. The excess noise is due to the
environmental noise that remains at the microphone input, which is always present except in an
anechoic chamber.
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Figure 8.5: Noise at the ADC input
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Requirements review
Finally, one will review the requirements stated at the beginning of this work (see Section 2.3).
The requirements related to bird classification will be discussed in the next chapter.

Lifetime

The lifetime is limited by the supercapacitor, which is expected to work about 11 200 h at 60 °C
according to the datasheet [23]. The 10-degrees-rule for electrolytic capacitors can be used to
estimate supercapacitor lifetimes. This rule employs the Arrhenius equation, and states that
for every 10 °C reduction in operating temperature, the estimated life doubles. The expected
lifetime L at 20 °C is thus given by

L = L0 2
T0−T

10 °C = 179 200 h

which corresponds to 20.5 years. It can even be increased above 20 years with additional
equalization methods [45]. As required, the sensor is working fully autonomously (day and
night) for more than 15 years.

Volume and cost

One first confirms that the total volume is inside the constraint (200 mm× 200 mm× 50 mm):
143 mm× 82 mm× 25 mm.

The overall cost, including the PCB, is 74.28 euros. The most important costs are the solar cells
(30.4 euros), the supercapacitor (17.5 euros) and the PCB (20 euros). In order to stay below
the limit of 15 euros, both the solar cells and supercap need to have a smaller size by reducing
the power consumption. Indeed, typical ultra-low-power sensors have a power consumption in
the order of the µW [21]. This constraint implies further concessions on the audio processing
period over a day. Particularly when the reduced solar cells are strongly limited by the sun
illuminance (i.e. in winter), one has to allow the sensor to have a shorter processing period
(which fortunately has not much impact since birds are less active in this season). In a massive
development, buying in bulk will further help decrease overall costs.

Sound detection

Determining the detection distance is probably the most difficult requirement to precisely
characterize. It can be based on real-time songs but birds are singing intermittently and with
different sound amplitudes. It can also be characterized by a speaker emitting bird songs, but
the sound pressure cannot either be known without a sound level meter. Still, the device has
been able to detect pure sine waves with speakers at reasonable distance, as well as bird songs
as depicted in the next chapter.
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Chapter 9

Inference algorithm

This chapter will present different algorithms aiming to discriminate bird species based on the
microphone signal. This temporal signal is often transformed into its dual domain: the spectral
(or frequency) domain. Representing a signal in the spectral domain is done through the Fourier
transform, which is in fact a fast Fourier transform (FFT) for digitized data (such as data stored
in a microcontroller).

The requirements in Section 2.3 state that the sensor has to discriminate among four very
common birds in Belgian forests. These species are the pigeon, blackbird, great tit, and blue tit.
The remaining of the section will demonstrate the ability of the sensor node to find the correct
species with sufficient precision.

9.1 Peak frequency extraction
The first algorithm will process bird songs based on the frequency at which the signal has the
most power. Because the FFT size is limited by computation time, it is not possible to record
and process sound over an entire bird song duration (typically 2 s). On the other hand, one
cannot decrease the sampling frequency below 20 kHz in order to detect useful frequencies below
10 kHz1, which would give 40 000 samples during a typical song duration. It is thus required to
spread the sampling duration over multiple time windows. For example, Figure 9.1 shows the
peak frequency2 for each time window (32 ms whose 6.4 ms to retrieve 128 samples at 20 kHz) of
a great tit song. One can roughly see two sounds spaced by 4 ms and oscillating between 3 kHz
and 4.5 kHz. Based on the graph, it is thus possible to discriminate visually between species
with substantially different frequency profiles, but formalizing further embedded processing to
extract meaningful information from this peak frequency graph is less trivial.

Although this algorithm shows good visual results, this kind of algorithm misses important
information for different reasons.

First, most bird songs present several high amplitudes for different frequencies at the same time,
these secondary frequencies are never detected. This means that several bird songs with the

1The Nyquist–Shannon sampling theorem states that, to avoid loss of information during a sampling process,
a sampling frequency larger than twice the maximum frequency contained in the signal is required.

2That is, there is only one frequency associated with each time sample.
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same peak frequency but different secondary frequencies are never discriminated.

Second, several birds present different frequency profiles during their song, that is to say the
FFT is varying with time (e.g. 3 kHz and 4.5 kHz for the song presented in Figure 9.1). Thereby,
characterizing birds based on one FFT over a short period of time misses non-harmonious (or
non-periodic) bird songs and cannot discriminate two birds with the same frequency peak in
the beginning of their song, for example.
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Figure 9.1: Peak frequencies associated with a great tit song

9.2 Spectogram decomposition
From the previous remarks, it is more convenient to represent the signal with a spectrogram: the
visual representation of the spectrum of frequencies of a signal as it varies with time. Creating
a spectrogram using the FFT is a digital process. Digitally sampled data, in the time domain,
are broken up into chunks, which usually overlap, and Fourier transformed to calculate the
magnitude of the frequency spectrum for each chunk. Each chunk then corresponds to a vertical
line in the image, which provides the magnitude versus frequency for a specific moment.

A smaller (shorter) window will produce more accurate results in timing, at the expense of
precision of frequency representation. This leads to the consideration of trade-offs between time
and frequency resolution in audition: the bandwidth can only be narrowed (i.e. the frequency
resolution increased) if the temporal resolution is decreased, because narrower filters have longer
time constants. In the design of linear filters, the uncertainty principle fixes a limit on the
resolution that can be attained (the Gabor limit3), giving a lower bound for the product of the
variance in time and the variance in frequency for a single linear filter [46].

3It is nothing else than the Heisenberg’s uncertainty principle applied in the context of signal processing to
time and frequency (2 dual physical quantities).
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Some birds have several typical songs. For example, Figure 9.2 presents the spectrogram for
two common songs of the blue tit. As human perception of sound intensity is logarithmic [47],
the graphs are given in the form of log scale.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

1

2

3

4

5

6

7

8

9

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

(a) Bird chirp
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(b) Bird song

Figure 9.2: Spectrograms of two sounds from the blue tit computed with this sensor node

Due to the limited memory, the signal has to be processed at each time window. This considerably
increases the delay between adjacent time windows, given by 26.5 ms for an FFT size of N = 128
(see Table 9.1).

Time [ms]
Data sampling 1.28
FFT 25
Data storage 0.2
Total 26.5

Table 9.1: Processing time for one spectrogram data chunk with 128 samples

In this case, the sampling period is set to 10 µs, corresponding to a sampling frequency fs =
100 kHz. Hence, the frequency resolution in the spectrogram is given by

∆f = fs

N
= 781 Hz

with a maximum analyzed frequency of fs/2 = 50 kHz. One can finally see the trade-off
appearing on the frequency resolution, which cannot be improved (that is, decreased) without

• increasing N , which would require more memory storage and processing time (the FFT
time evolving according to O(N2), or O(N logN) with optimized algorithms [48]),

• or decreasing fs, which would increase the sampling time (impinging on the time window
length).
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Figure 9.3 provides the time–frequency comparison of four different bird songs. As discussed,
the frequency resolution is also 781 Hz. This makes discrimination among the birds very difficult
since some peak frequencies are identical for several birds.
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(a) Pigeon
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(c) Great tit
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(d) Blue tit

Figure 9.3: Spectrograms of four different bird songs computed with this sensor node

To illustrate the difference, Figure 9.4 shows the spectrogram of the great tit when the signal does
not significantly suffer from the time-frequency trade-off (that is, the graph has been computed
in offline mode from an audio file at 44.1 kHz). One can clearly see four songs oscillating between
3 kHz and 6 kHz, which is not detected by the embedded low-resource microcontroller (see
Figure 9.3c). It will thus be needed to work on specific characteristics of the signal instead of
the whole spectrogram pattern.
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Figure 9.4: Precise spectrogram of the great tit song (from a bird song database)

Feature extraction

Now that the signal has been converted into meaningful information via its spectrogram form,
some features need to be extracted from it. Typical features for bird recognition are specific
frequencies for each time window, the median as well as the 5 and 95 percentiles which are robust
measures of minimum and maximum frequency [46]. The bandwidth can also be extracted,
defined as the difference between the 5 and 95 percentiles.

For this work, the average frequency weighted by the intensity is analyzed because of its
simplicity and robustness. In a spectrogram, let f [i] be the vector of discrete frequencies (y-axis)
with size N/2, t[j] be the vector of discrete time samples (x-axis) with size M (depending
on the audio recording time and the window overlap) and s[i, j] be the intensity of the i-th
frequency component during the j-th time period, then the average intensity for the i-th
frequency component throughout the time period is

savg[i] = 1
M

M∑
j=1

s[i, j] [dB/Hz]

and the weighted average frequency is given by

favg =
∑L

j=1 savg[i] f [i]∑L
j=1 savg[i]

[Hz]

where L is the index corresponding to a frequency of 10 kHz in order to remove high-frequency
noise from the average. The spectrogram has frequencies above this range if fmax > 10 kHz,
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that is fs > 20 kHz. The sampling frequency is thus fixed to fs = 20 kHz in order to remove
significant noise while keeping the useful bandwidth of bird song (below 10 kHz).

During calibration, the mean background noise (expressed as power spectral density) is char-
acterized for each frequency, resulting in a combination of 1/f and white noise. It is then
removed from the intensity s[i, j] when a real signal is analyzed. The algorithm is also tuned
by an intensity threshold to output a bird species only when the signal sufficiently exceeds the
background noise, meaning that a sound has been produced.

Feature selection

Additionally, feature selection is used to evaluate the predictive power that a feature has with
respect to some attribute. In information gain feature selection, each feature is evaluated by
measuring the information gain with respect to the species label, which is the amount by which
the feature reduces the uncertainty in the label. To reduce the problem complexity, the weighted
average frequency is kept in this work. The problem thus becomes a 1D classification.

Inference

The final step consists to infer the species based on the selected feature. A simple machine-
learning model for this purpose is the support vector machine (SVM), but it requires much
offline preprocessing beforehand. Since only one feature is analyzed, a complex machine-learning
algorithm has little interest. The classifier used for this work is based on a k-nearest neighbors
algorithm (KNN) with k = 5, meaning that the class (i.e. the species) associated with a new
sample is classified by a plurality vote among the k nearest data according to the feature (i.e.
the weighted average frequency).

A learning phase now consists to analyze several songs from the six species previously mentioned,
and extract the weighted average frequency for all these learning samples. Figure 9.5 shows the
repartition of the weighted average frequency among the species learning samples, based on the
spectrogram of six different audio samples for each species4.

0 1 2 3 4 5 6 7
Weighted average frequency [kHz]

Pigeon
Blackbird
Great tit
Blue tit

Figure 9.5: Repartition of the weighted average frequency among the species learning samples

One can deduce that the weighted average frequency is actually a pertinent feature with useful
information since it discriminates quite well between the different species.

4The audio files come from a collaborative and open-source database of bird songs (xeno-canto [49]).
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Then, these frequencies are stored inside the sensor node in order to infer the species of a newly
recorded song. The microcontroller launches a KNN classifier by selecting the species which is
the most similar to the new sample (that is, which has the nearest weighted average frequency).

Experimental results

To validate the theoretical work, bird songs are generated from a laptop speaker in the area
around the sensor node. Based on the KNN algorithm and these thresholds encoded in the
microcontroller, Table 9.2 provides the number of right predictions on the learning samples with
the very-low-precision algorithm inside the microcontroller. Surprisingly, it manages to retrieve
the correct species with more than 94% of precision on average.

Species Number of correct predictions
Pigeon 6/6
Blackbird 6/6
Great tit 6/6
Blue tit 4/6

Table 9.2: Number of right predictions on the learning samples with the sensor node

It is now possible to test the algorithm on new samples, which can either be additional audio
files in a database or real-time songs from birds in the vicinity. One will focus on the former
since real-time songs are too sporadic to be precisely characterized. For each species, positions
of three testing samples are given in Figure 9.6. One can see that the KNN algorithm is able to
find the correct for all new samples.

0 1 2 3 4 5 6 7
Weighted average frequency [kHz]

Pigeon (learning)
Pigeon (test)
Blackbird (learning)
Blackbird (test)
Great tit (learning)
Great tit (test)
Blue tit (learning)
Blue tit (test)

Figure 9.6: Predictions on new samples with the sensor node
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Chapter 10

Improvement perspectives

Some improvements could be made to further refine the main objectives of this smart sensor.

10.1 Power management
As discussed before, one could first decrease the power consumption and hence the size of the
device at the cost of less precise and frequent audio monitoring. This solution has not been
considered in this work due to the strong expectations imposed at the beginning to monitor
with precision the forest. This possibility should however be carefully reviewed for every person
willing a massive and cheap deployment of such sensors by this time.

Second, the power management unit from e-peas is excessively successful in terms of power
losses reduction, but it limits the storage element voltage at 4.5 V. By increasing this voltage
limitation to 5.5 V and beyond, the supercapacitor could store much more useful energy. If this
limitation is increased to 6.3 V, aluminum electrolytic capacitors could be used with an even
smaller capacitance size. This technology has an advantage in terms of lifetime compared to
other supercapacitor technologies. Still, one should keep in mind that this voltage increase is
meaningless without a change of the internal DC-DC converter from the storage element to the
supply voltage, which has to be a buck converter (that is, with high efficiency whatever the
input voltage) in place of the low-dropout regulator currently used in the AEM10941 (whose
efficiency drops below 50 % when the input voltage is twice the supply voltage: 5 V).

10.2 Refinement of inference algorithms
The majority of discrimination algorithms are done thanks to machine-learning algorithms
applied on the time–frequency texture. Typical models use convolutional neural networks
(CNNs) and/or recurrent neural networks (RNNs). With deep learning, bird detection can
achieve very high retrieval rates in remote monitoring data, with no manual recalibration, and
no pretraining of the detector for the target species or the acoustic conditions in the target
environment [50].

Other less resource-intensive models use feature extraction performed by matching the time-
frequency plane with a number of time-frequency blocks previously learned. The minimum
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matching energy of the blocks makes a feature vector of the audio signal and is sent to a classifier
for song discrimination [51]. However, these models require a substantial amount of memory
and speed, which is impractical for embedded applications. Still, one could optimize these
memory/time/energy trade-offs based on the microcontroller capabilities in order to extract
meaningful information.

Additionally, the present algorithm is not able to find other species. It will thus output one
of the four species even for other species and external sounds (such as traffic noise), creating
so-called false positive detections. The algorithms previously mentioned would greatly help
solve this issue.

10.3 Robustness under difficult conditions
The device can be further designed to integrate a robust protection against difficult environmental
conditions. One can for example cite a waterproof case which supports high temperature
variations. Potting the entire PCB would also help reduce oxidation and support shocks/vibration
which are paramount for an expected lifetime exceeding 15 years.
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Chapter 11

Conclusion

The Internet of Things (IoT) is predicted to lead to the deployment of a very large number of
connected smart sensors for various applications, which is not environmentally sustainable if the
devices are frequently replaced. Additionally, rising climate change due to ecosystem destruction
demands to automatically monitor forests in order to analyze and preserve the ecosystem.

In this master thesis, the focus is on the development of an autonomous and efficient audio smart
sensor continuously analyzing the forest ecosystem. To fulfill the energy constraints implied
by its total autonomy, this sensor harvests energy from the environment through miniaturized
photovoltaic cells sized according to the sun illuminance throughout days and seasons, using an
environmentally-friendly and non-toxic supercapacitor to store energy. With a 15+ year lifetime,
this fully autonomous device operates at an optimized 2.5 V supply voltage reaching 22.1 mW of
average power harvesting/consumption. An electret condenser microphone collects a signal as
low as 16 dBSPL (compared to a 14.22 dBSPL input-referred noise), which is then amplified in the
full frequency range of bird emission (20 Hz – 20 kHz) by a low-noise and low-power analog front-
end. This signal is further processed in an ultra-low-power chip embedding a microcontroller,
alternating between run and sleep modes with a 1/3 duty cycle, and a transceiver optimized for
IoT applications with LoRaWAN networks.

The microcontroller detects sounds when birds are active (typically during the day for more
than 12 hours) and ensures the radio-frequency communication at night depending on the
supercapacitor voltage that is carefully monitored in real time. It sends information about
the bird species encountered during the day, as well as their apparition frequency. In case of
firmware update, this device receives the associated fragments when its energy is sufficient and
it automatically changes the firmware with energy-optimized software requiring only 10.6 J for
the whole update.

By computing the weighted average frequency of the received sounds, the smart sensor is able
to discriminate between four common birds in Belgium: the pigeon, blackbird, great tit and
blue tit. For each species, several songs have been analyzed and used to train a k-nearest
neighbors (KNN) classifier working in the real-time embedded system. Its precision, defined
as the likelihood to find the correct species, reaches 94% for songs coming from the previously
learned database. For newly analyzed sounds, the detection algorithm performs likewise. More
complex machine-learning algorithms could finally be further designed to discriminate between
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more species.

SWOT analysis
A SWOT analysis is a strategic technique used to help identify strengths, weaknesses, opportu-
nities, and threats related to a concept [52]. Depicted in Table 11.1, it concludes this work by
summarizing the principal characteristics of the smart sensor, which have all been well detailed
in Chapters 10 and 11.

Positive Negative

In
te
rn
al

Strengths: Weaknesses:
• Fully autonomous and low power • Resource-limited inference algorithm
• Long lifetime (15+ years) • Size of the sensor node
• Environmentally-friendly • Production cost
• Bird classification

Ex
te
rn
al

Opportunities: Threats:
• High demand for sustainable sensors • Harsh environmental conditions

and forest monitoring
• Rising of low-power

machine-learning algorithms

Table 11.1: SWOT analysis of this smart sensor
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Appendix A

Transimpedance amplifier

Figure A.1 presents the transimpedance amplification circuit simplified in the audio frequency.

−

+

V CC

IAC

R2

R3

R4

VCC

Vo

VB

Figure A.1: Simplified transimpedance amplification circuit

The voltage at the negative terminal of the op-amp is given by

V− = Vo −R2 IAC [V].

Since the positive and negative terminals of an op-amp are identical (ideally), the relation
becomes

VB = Vo −R2 IAC ⇒ Vo = VB +R2 IAC [V],
which is the transimpedance transfer function of the circuit.
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Appendix B

Noise gain of the microphone amplifier

Figure B.1 presents the transimpedance amplification circuit simplified in the audio frequency.
The supply voltage (DC) is grounded and the microphone (input current source) is open-circuited.
Noise gain is referred to the noise source, which is connected to the noninverting input by
definition.

−

+

VCC

R1

−
+
Vi

R2

Vo

Figure B.1: Simplified transimpedance amplification circuit for the noise gain

The voltage at the negative terminal of the op-amp is given by

V− = R1

R1 +R2
Vo [V].

Since the positive and negative terminals of an op-amp are identical (ideally), the relation
becomes

Vo

Vi
= 1 + R2

R1
[V],

which is the noise gain of the circuit.
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Appendix C

PCB layout and schematic

The PCB layout (see Figure C.1) and schematic (see Figure C.2) were designed with KiCad.
The PCB is composed of four layers, of which two are for GND and VDD.

Figure C.1: PCB layout
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