Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 54-20 (2021) 675-680

Greedy Decentralized Auction-based Task
Allocation for Multi-Agent Systems *
Martin Braquet * Efstathios Bakolas *

* Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, Texas 78712-1221, USA
(e-mail: braquet@utezas.edu, bakolas@austin.utexas.edu,).

Abstract: We propose a decentralized auction-based algorithm for the solution of dynamic task
allocation problems for spatially distributed multi-agent systems. In our approach, each member
of the multi-agent team is assigned to at most one task from a set of spatially distributed tasks,
while several agents can be allocated to the same task. The task assignment is dynamic since it is
updated at discrete time stages (iterations) to account for the current states of the agents as the
latter move towards the tasks assigned to them at the previous stage. Our proposed methods can
find applications in problems of resource allocation by intelligent machines such as the delivery
of packages by a fleet of unmanned or semi-autonomous aerial vehicles. In our approach, the task
allocation accounts for both the cost incurred by the agents for the completion of their assigned
tasks (e.g., energy or fuel consumption) and the rewards earned for their completion (which
may reflect, for instance, the agents’ satisfaction). We propose a Greedy Coalition Auction
Algorithm (GCAA) in which the agents possess bid vectors representing their best evaluations
of the task utilities. The agents propose bids, deduce an allocation based on their bid vectors
and update them after each iteration. The solution estimate of the proposed task allocation
algorithm converges after a finite number of iterations which cannot exceed the number of
agents. Finally, we use numerical simulations to illustrate the effectiveness of the proposed
task allocation algorithm (in terms of performance and computation time) in several scenarios
involving multiple agents and tasks distributed over a spatial 2D domain.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Multi-agent and Networked Systems, Auction Algorithms, Decentralized Systems,

Trajectory Planning.

1. INTRODUCTION

We present a decentralized auction-based algorithm to
address dynamic task allocation problems for multi-
agent systems. In our problem, the agents have to com-
plete a set of tasks which are distributed over a given
spatial domain. We propose a decentralized solution
for the computation of task assignment profiles based
on auction-based negotiations between the agents. Our
proposed methods can find applications in problems in
which agents (e.g., autonomous vehicles, humans, robots,
intelligent machines, etc.) have to share resources and
distribute the workload among them in order to accom-
plish one or more tasks. Disaster response by a fleet of
unmanned aerial vehicles (UAV) which have to assess
the severity of the situation and discover where help
is needed more as well as the delivery of packages by
autonomous or semi-autonomous ground or aerial robots
are two characteristic examples.

Literature review: There are several types of task alloca-
tion problems for multi-agent systems depending on the
ability of each agent to handle multiple tasks (involving
task scheduling) and on whether it is possible to have
multiple agents assigned to the same task (thus, allowing
for the formation of coalition of agents).

An important consideration when developing algorithms
for multi-agent task allocation is the ability of these
algorithms to be deployed in systems where there is no
single entity that allocates tasks and workload among
the agents. In this regard, centralized methods rely on
a single point of operation in the sense that the agents

* This work was supported in part by a Fellowship of the Belgian
American Educational Foundation.

negotiate with each other under the direction of a cen-
tral entity (Gerkey and Mataric (2002)). Decentralized
methods avoid this single point of failure by allowing
each agent to consult directly with the other agents
and compute their own task assignments. Decentralized
execution, however, adds significant computation time
(Choi et al. (2009); Nanjanath and Gini (2010); Capitan
et al. (2013)).

Auction-based approaches are derived from market econ-
omy principles in which each agent tries to maximize
his own profit, based on the total reward that will then
be redistributed among them. These methods find many
applications (e.g., satellites in Phillips and Parra (2021),
drones in Hayat et al. (2020)) mainly because of certain
key benefits such as the worst-case global utility that can
be derived theoretically by using them (Qu et al. (2019)),
their fast convergence, low complexity and high compu-
tational efficiency (Kim et al. (2019); Shin et al. (2019)).
Auction-based methods have also been boosted by recent
breakthroughs in reinforcement learning (Rahili et al.
(2020)). The consensus-based bundle algorithm (Choi
et al. (2009)) (CBBA) utilizes a market-based decision
strategy as the mechanism for decentralized task selec-
tion and uses a consensus routine based on local com-
munication as a conflict resolution mechanism to achieve
agreement on the winning bid values.

One of the simplest approaches to solve decentralized
auction-based problems is via greedy algorithms, which
consider the optimal (in a myopic sense) choice that max-
imizes a global objective (Luo et al. (2012)). Auction-
based techniques have been proven to produce subopti-
mal solutions (Gerkey and Matari¢ (2004)) with a guar-
anteed convergence to a conflict-free assignment. Auc-

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2021.11.249

676 Martin Braquet et al. / [FAC PapersOnLine 54-20 (2021) 675—680

tions are known to be scalable and robust to variations in
the communication network topology (Whitbrook et al.

(2019); Otte et al. (2020)).

Other types of task allocation methods include game
theoretic approaches and in particular methods based
on potential games for the computation of mutually
agreeable task assignments. Although the negotiation
protocols are proven to converge to mutually agreeable
tasks (Arslan et al. (2007)), their convergence is only
guaranteed for the case in which the game remains the
same (task utilities are constant) which is not the case in
a dynamic task allocation problem. Such algorithms aim
to compute a mutually agreeable profile corresponding
to a Nash equilibrium (game-theoretic formulation of
task allocation problems) for all agents (Bakolas and
Lee (2021)). Game theory is an important tool to extend
task allocation problems to multiple agents but finding
efficient Nash equilibria (task assignment profiles giving
high global utility% is not guaranteed (solutions based on
individual rationality may not automatically lead to high
global utility) and computational cost can be significant.
Recently, machine-learning algorithms have received a
significant amount of attention in control theory and
for task allocation problems mainly because they can
process a lot of information such as the agents’ state
(by utilizing, for instance, neural networks) and handle
unknown environments (e.g., task features) via reinforce-
ment learning (especially Deep Q-Learning Gautier et al.
(2020)).

Contributions: In this paper, we propose a dynamic
auction-based task allocation algorithm. In our ap-
proach, the task utilities depend on both the rewards
earned by the agents for accomplishing their assigned
tasks as well as the costs they incur while doing so (the
latter correspond to cost-to-go functions of relevant op-
timal control problems). The utilities are thus in general
dependent on the state of the agents. In this context, the
agents can only perform one task while several agents
can be assigned the same task (if this is beneficial to
them and their team). In contrast with game-theoretic
algorithms which may not always achieve high global
utility for the team (inefficient Nash equilibria), our
proposed auction-based task allocation mechanism finds
task assignments that aim to greedily reach the global
utility of the system. A key advantage of our proposed
approach is time efficiency, yet with reasonably high
global utility.

We propose a Greedy Coalition Auction Algorithm
(GCAA) where the agents negotiate while moving in
their state space towards their assigned tasks. When an
agent changes his assignment, he needs to recompute the
cost estimate and thus his own state-dependent utility.
In contrast to game-theoretic solutions (Bakolas and Lee
(2021)) which aim for individual rationality but cannot
guarantee good team performance, we do not seek a
mutually agreeable task assignment but consider instead
a broader set of solutions that allows for a higher global
utility. Furthermore, in contrast with the CBBA algo-
rithm which clusters and schedules a sequence of tasks
for each agent, in this work the problem is composed
of multiple agents making a coalition for a specific task
(which is the only task for that agent) and thus allows for
a faster task assignment. This work hence falls under the
category of Single-Task Multi-Robot Instantaneous As-
signment (ST-MR-IA) problem, also known as the coali-
tion formation problem (Gerkey and Matarié (2004)).

Outline: The rest of the paper is presented as follows. We
discuss the problem setup in Section 2. In Section 3, we
identify the utilities for the tasks, the agents individually,
and the team as a whole. The proposed dynamic auction-

based task allocation algorithm and the theoretical anal-
ysis on its convergence are presented in Section 4. In
Section 5, we present extensive numerical simulations.
Finally, concluding remarks and directions for future
work are provided in Section 6.

2. PROBLEM SETUP

We assume a multi-agent system (MAS) comprised of
n agents. These agents, who can be assigned only one
task, are called active agents when they are far from
their target so that they can recompute their best task
assignment while moving toward the target. Otherwise
they are called passive agents when they are too close
to the target to consider other targets (they are then
permanently assigned to this final task). Let z; € S; C X
and u; € U;, for ¢ € [1,n]4 be, respectively, the state and
input of the i-th agent of the MAS at time ¢ > 0 (S; being
his state space and U; his input space), and X C R™. We
also define & € § the joint state of the MAS, in which

x := (z1,...,2,) and S := 8§ X --- x S, (joint state
space). Let w € U be the joint input of the MAS, where
u = (u1,...,up) and U := Uy x -+ x U, (joint input
space).

The motion of the i-th agent is described by
i = fi(z,u), x;(0)=2V, ic[ln)y, (1)
where 2V € S; is the initial state of the i-th agent

and f; :Z S; x U; — 8, is his associated vector field.
Consequently, = (29,...,29) € S denotes the joint
initial state.

In general, task allocation aims to assign individual tasks
for n agents and p tasks, T := {T1,...,7T,}. Let X1
be the set of states associated with the given tasks,
where X7 = {a7,...,27,}, and A; = {af : k €
[1,card(A;)]q} the set of possible task assignments for
the i-th agent given a set of tasks 7. While the agents
have limited communication between each other, we
suppose that they have complete information about all

the tasks available. Each assignment af € A; is equal to
either a task in T, that is, a¥ = 7, where 7y € T, or the
null assignment, that is, a¥ = @.

Additionally, we denote the set of active agents as N, C
[1,n]q and we fix the assignment a; of agent ¢ (thus
switching his status from active to passive) for all ¢t > ¢,
if the agent lies inside the boundary of the target, that is,
Qi(xi(tp), ;) < 0 where ®;(xz;(t,),27;) is a boundary
constraint; for instance, ®;(xi(tp), z7;) = |zi(tp) —
z7,|| — Ry, where R, is the minimum agent-to-target
distance to make the task assignment permanent.

3. TASK UTILITIES

The task utility is characterized by a reward obtained for
the completion of the task 7; € T and a state-dependent
cost reflecting the cost to finish this task (for example,
the transition cost due to the motion of the agent).

Static task wutility: Given an assignment profile a =
(aiy...,ay), we denote by 7;71(a) the index-set corre-
sponding to the agents assigned to task 7; € 7 under the
particular profile. Since a task is not necessarily accom-
plished when an agent is assigned to it, we let p;; € [0, 1]
be the probability of the task 7; to be completed suc-
cessfully by the i-th agent. In this case, the probability

that the task is successfully completed by at least one
agent increases with the number of agents assigned to

Martin Braquet et al. / [FAC PapersOnLine 54-20 (2021) 675—680 677

this task. The expected reward for completing task 7; is
defined as Bakolas and Lee (2021):

r7.(a) =71, [1 - HieTj,l(a)(l —Pij)| (2)

where 77; is the nominal reward of 7;. Indeed, the
probability that at least one agent completes the task
is equal to the complementary of the probability that no
agent completes the task, i.e., HiET_fl(a)(l —pij). It is
J
worth noting that the assignments (and their associated
utility) of the passive agents are also taken into account
when computing the total reward.
State-dependent task completion cost: The cost to finish
the task 7; associated with the state z7; at time t = t¢ 7,
by the i-th agent is defined as the optimal cost of the
following the optimal control problem.
Problem 1. Let a; = T;, where T; € T and ¢ € [1,n]q.
Furthermore,let 7. € S; denote the state linked to 7
and tr 7; > 0 the related completion time for 7;. The goal
is to obtain an optimal control input wf () : [0,t] — U;
which is a piece-wise continuous function that minimizes
the following functional:

tf
Tiwi(yalor) = [Lim@m@)d, ()
0
such that the dynamic constraints (1) and the following
terminal constraint W;(z;(tf), z7;) = 0, where W;(-;z7;)
is a given C! function, are respected. Finally, the mini-
mum cost is given by p;(22; 27,) == Ti(uf(-); 29, 27;).

Total Task Utility: The total completion cost of task 7;
given the assignment profile a = (aq, ..., a,) is given by

. A0 o (0.
%TJ (a,w 71'7’1) = Zieﬁ_l(a) pz(xzaij)v (4)

which leads to the definition of the total task utility
associated with task 7; for a given x

Ur (a; x¥) .= r7;(a) — A1, R (a, x¥; xT;) (5)
where A7; is a constant which is used to convert the cost-
to-go to the same units as the reward (e.g., from a loss
of energy to a loss of money).

Individual, Team Utilities: Let us denote the global
utility as U(a;z°) = 273672/173((1;300). The goal is
to set this team’s utility equal to the sum of each
individual utility in order to maximize each individual
utility separately. In this regard, based on the task
assignment a, we set the individual utility of agent ¢
equal to his marginal contribution to the global utility

U(a;z°):
U(a; x°) .= U(a; z°) —U((ag,a_;); z°)
= Uy, (a;2°) —Ur ((ag,a—);x"). (6)
4. DYNAMIC TASK ALLOCATION

4.1 Problem formulation

The task allocation is called dynamic since the utilities of
the agents change along their path towards their target
(state-dependent cost and agents obtain new information

by communicating with other agents in the surrounding).
In this case, a new assignment profile a*(t) has to be
selected at each time step t € [0,#] as the agents evolve
in their state space.

Problem 2. (DTA: Dynamic Task Allocation). Given tf >
0 and 2° € S, find a time-varying task assignment profile

a*(+) : [0,4] — A for all the remaining active agents
i € Ny, that maximizes the global utility in a decentral-
ized way (in the presence of communication constraints)
according to the permanent assignment a;, of the passive

agents i, € N}, = [1,n]q\N, and the terminal constraints
U, (2 (te), SCT,J.) =0.

4.2 Auction protocols for decentralized task allocation

The main principle of auctions consists in the computa-
tion of agents’ individual utility for some tasks (called
bids). Based on these proposed bids, the agents commu-
nicate between each other in order to deduce the best
allocation for each of them. A key point is that for their
realization, an agent does not have to know the utilities
of his teammates (decentralized implementation). Next
we propose an algorithm solving Problem 2, its main
idea is to find the best task coalition for the multi-agent
network by allocating the tasks to the agents obtaining
the highest utility (greedy approach).

4.8 Greedy Coalition Auction Algorithm

The Greedy Coalition Auction Algorithm (GCAA) is an
auction-based algorithm that leverages the simplicity of
greedy approaches to provide a solution with fast con-
vergence. The main idea is to iterate between an auction
phase and a consensus phase such that it converges to a
winning bids list (Choi et al. (2009)).

Each agent has three vectors that are constantly updated
at each iteration step t. The first vector z; € [0,p]]
is the list of selected tasks among 7, meaning that
agent i possesses a vector z; of length n where the k-th
element of the vector is the expected task assignment of
agent k£ to the best knowledge of agent i. The second
vector y; € RZ, is the list of winning bids (agent’s
utilities), that is, the k-th element of y; is the expected
individual utility of agent k by selecting the task z; 5, (k-
th element of the vector of selected tasks z;). The third
vector ¢; € [0,1]7 is the list of finalized (or completed)
allocations and informs agent i about the status of the
allocation for the other agents. In particular, the k-th
element of ¢; is set to 1 if the agent k does not plan to
change his target anymore, and 0 otherwise. This way,
the agents for which the assignment is completed are not
taken into account for the auction process in subsequent
steps. Based on these three vectors that are first updated,
each agent will decide and propose the best assignment
for themselves (i.e., maximizing their own utility). The
main algorithm is presented in Main Algorithm and the
two associated phases are explained next.

Main Algorithm: Greedy Coalition Auction Algorithm

Input: x°

Output: z(t)

:t=0

y(0)=0

z(0)=0

c(0)=0

while 37 : ¢;;(t) =0 and ¢; ;(t —
SelectBestTask()
ShareStateVectors()

UpdateStateVectors()
t=t+1

1)=0 do

Auction process: The first phase of the algorithm is the
auction process. Here, each agent aims to select his best
task based on his own utility. At lines 2—4 of Algorithm 1,
the previous bid vectors are copied into the current ones.

678 Martin Braquet et al. / [FAC PapersOnLine 54-20 (2021) 675—680

If the task selected by one agent ¢ is not finalized (line
5), agent 4 picks the task J; that maximizes his expected
utility (lines 6-7). Agent ¢ then updates his bid vector
with the selected task (line 8) and the associated utility
(line 9).

Algorithm 1 Select the best task for agent i

Function SelectBestTask
Input: y(t —1),z(t — 1),c(t — 1), 2°
Output: y(t), 2(t)

1: for i € [1,n]y do

2 () =wi(t—1)

3:) zz(t - 1)

4: c,(y=r¢ci(t—1)

5: if ¢; ;(t) = 0 then

6: a= zl(t)

7: Ji = argmax; U ((2 (1), a*,);x?)
8: zii(t) = J;

9:

Yi,i(t) = Ui(zi(t);)

Consensus process: In Algorithm 2, the consensus
process first aims to share the bid vectors y;, z;, ¢;
with the other agents within the communication range
of agent i. For each agent i, the agents k£ within the
communication range of agent ¢ (satisfying g;x(t) =1 at
lines 1-2) send their bid vectors yy, 1 (t), 2k, (t) and ¢y k()
(lines 3-5). Then in Algorithm 3, based on his winner
bids vector, agent i determines the set of agents A;(t)
allocated to the same selected task (line 2) and extracts
the winner based on their utility (line 3). He adds the
winner to the list of finalized allocations ¢; (line 4) and

resets the values of the losers in the bids y; and tasks z;
(lines 5-8).

Algorithm 2 Share the bid vectors to agent ¢

Function ShareStateVectors
Input: y(t), 2(), c(t)
Output: y(t), z(t), c(t)

1: for i € [1,n], do

2 for k € {k|gix(t) =
3: Z; k(t) = Zk’k(t)
4' (1
5

Algorithm 3 Update the bid vectors of agent i accord-
ing to the winners/losers
Function UpdateStateVectors
Input: y(t), 2(t), c(t)
Output: y(t), z(t), c(t)
1. for i € [1,n]q do

2 Ai(t) ={k|2zik(t) =2,(t), fir(t) =0}
3: K, = argmax; c 1., Yi k(1)

4: Ci,K; () 1

5: for k € A;(t) \ K; do

6: Zz,k() 0

7 yi7k() 0

Then the time is updated (¢t < ¢ + 1) and the main
algorithm loops to Algorithm 1. Finally, the algorithm
has converged when the finalized choices are validated
for some agents (¢;; = 1) and the other agents not

assigned to a task (¢;; = 0) have not changed since

the past iteration (meaning that the cost to reach each
task is higher than the marginal reward they can obtain).
Once the task allocation is completed, the agents move
according to the solution of Problem 1.

4.4 Application example

To illustrate the main steps of the algorithm through
a simple example with 2 tasks and 4 agents, Fig. 1
shows a task allocation along with their bid vectors. The
communication links are shown with red dashed lines and
the final task allocation is given with green dashed lines.

Fig. 1. Graphical illustration of the auction-based greedy
algorithm.

Since agents A; and As cannot communicate directly
with each other, they assume that they will obtain the
entire reward by completing their selected task T while
they will actually need to split it. More precisely, each
agent ¢ fills in his bid vector (associated to his i-th
row) depending on his best assignment during the first
iteration. For example, agent A; chooses task T» with
a utility of 5 while agent A, chooses task 177 with a
utility of 6. Then, they share their bid vector (i.e., fill in
their rows) with their neighbors only, so that A; does not
have information about Ag, and reciprocally. Each agent
finally updates his bid vector by selecting the task with
the highest utility and setting the associated assignment
status c to 1 (e.g., at the first iteration, all agents finalize
the assignment of Ay because he proposes a utility of
7). At the next iterations, the assignment of A5 is no
longer computed and the other agents take into account
the permanent assignment of A, for the computation of
their own utility (e.g., A4 no longer proposes a bid for T
because the reduction of the marginal reward associated
to the coalition with A, dropped his marginal utility
below zero, it is thus preferable for A4 not to select any
task by securing a null utility). At the second iteration,
A; and Aj propose and finalize their assignment for Tp
since they think that they are completing T individ-
ually (no communication between them) and A4 does
not propose any assignment. This example thus shows
that communication constraints can lead to suboptimal
solutions because the actual utility that A; and Az will
receive by completing T5 is lower than their prediction.

4.5 Theoretical convergence

Theorem 1. Consider the auction-based task allocation
process solved by the GCAA algorithm (Main Algo-
rithm) where the communication range can be limited.
Let n be the number of agents, then GCAA converges to
an assignment within at most n steps.

Proof: The proof is derived from the definition of greedy
algorithms. In particular at each time iteration ¢ and for
all agents i € [1,n]g4, one element (index K; as presented
in Algorithm 3) of ¢; is set to 1 as the task of agent i is
set to be finalized. As a consequence at time ¢, there are

Martin Braquet et al. / [FAC PapersOnLine 54-20 (2021) 675—680 679

t elements of ¢; set to 1 and n —¢ elements still initialized
to 0. Hence at time ¢t = n, all the elements of ¢; are set to
1 for each agent ¢ which means that the stopping criteria
in Main Algorithm (c¢; ; = 1 for all agents 7) is necessarily
verified. The algorithm is thus proven to converge after
at most n steps (the number of agents). O

Remark 1 This convergence theorem guarantees that
the computation time is growing linearly with the num-
ber of agents.

5. NUMERICAL SIMULATIONS

In this section, we present numerical simulations! to
illustrate the main ideas of the methods proposed so
far. We consider a team of agents with double integrator

dynamics, that is, i = wu;, with p;(0) = p? and
pi(0) = oY, where p; € R? (pY € R?) and p; €
R? (v € R?) denote, respectively, the position and
velocity of the i-th agent at time ¢ (t, = 0), i €
[1,n]q. The performance index is given by the control
effort 7 (u;(+)) :== (1/2) fotf |u; (t)]?dt and the conversion
constant is Ay, = 1 (j € [1,pla). By setting z; :=
(pi, pi) € R* and 27, := (p7;,0) € R?, the terminal
constraint function is chosen randomly for the different
between:

o V;(xi(t,1;);27;) := i — x7;, which means that the
i-th agent tries to reach the position p7, associated
with his assigned task 7; at time ¢ = ¢ 7 and with
terminal velocity p7; (randomly selected).

o Ui(xi(tr.7;); 27;) := ||pi — p7; || — R7;, which means
that the i-th agent tries to reach the circle (with
radius RTJ) around his assigned task 7; at time
t = tf7; — 77; and then loiters around the target
until #¢ 7. In this work, the best entry point to enter

the circle is selected by discretizing the circle in 10
points and selecting the point that minimizes the
cost function?.

Both terminal constraints are associated with an opti-
mal control problem with non-zero initial and terminal
velocities. It turns out SSee, for instance, Battin (1987))
that the optimal control input is given by

(7, = 5i(t)] (7)

u;‘(t;tf,:v?,ij) =i 7

+ ﬁ {pﬁ —pi(t) = pr; (e — t)}

which defines a second-order differential equation with
time-varying coefficients where u}(t) = p;(¢), which is
solved numerically using integration tools (ODE45) in
MATLAB.

While problems with zero terminal velocities have an
analytical solution (Bakolas (2014)), problems with non-
zero terminal velocities require more computation time
due to the numerical integration.

A dynamic task allocation is then performed and pre-
sented through the dynamic map of the allocation. Fig. 2
(b,d,f) illustrates trajectories of the agents in the absence

of communication constraints (or limitations) while the
agents in Fig. 2 (a,c,e) can only communicate® with

1 Source code available at https://github.com/MartinBraquet/
task-allocation-auctions.

2 The best solution can also be found by optimal control methods
in a systematic / rigorous way and will be considered in further
work

3 The communication range is not shown in the figure for clarity.

01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(b) t=07F

0.1 02 03 0.4 0.5 06 0.7 0.8 09 1 “ﬂ 0.1 0.2 03 04 05 06 07 08 0.9 1

() t=4 d)t=4

01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 085 09 1

x m) x [m]

(e)t=10 (f) t =10

Fig. 2. Dynamic task allocation for the range constrained
(left, o = 0.3, U = 1.804) and range unconstrained
(right, 0 — oo, U = 1.515) cases (n = p = 10,
tf = 10).

the other agents within range ¢ = 0.3. Due to the fact
that the computation time required for the numerical
integration is substantial, we only consider scenarios with
n = 10 agents and p = 10 tasks. 5 tasks are fixed targets
with non-zero terminal velocities pr; € [—0.1,0.1] (black

squares). The other 5 tasks are dynamic, the agents need
to loiter at a radius Rﬁ € [0.032,0.048] and complete one
loop at velocity p7; € [~0.1,0.1] for a time 7, such that
77, /te € [0.15,0.25] (black dashed circle around a dashed
square).

In Fig. 2 where the range is limited to 0.3, several agents
are allocated to the same task because they are not in
communication with all the other agents. They thus esti-
mate their utility solely based on the reward of the task
while their marginal utility is actually lower. When the
agents come closer and enter the communication range,
the agents start assessing their marginal utility correctly
and thus consider other tasks that might increase their
own utility. Toward the end of the simulation (Fig. 2(e)),
the agents’ trajectory is subject to sharper changes of
direction (e.g. the red and light blue curves) compared

to the range unconstrained case (Fig. 2(f)).

Fig. 3 and 4 quantitatively show the allocation presented
above, for which the data from the range unconstrained
case (blue lines) are constant over time. When the
communication is limited, the total utility increases step-
by-step as the agents start communicating with their
neighbors (red line in Fig. 4) but still remains lower
than the utility obtained when the communication is
not limited. It is worth noting that even though the

680 Martin Braquet et al. / [FAC PapersOnLine 54-20 (2021) 675—680

= Cost (unconstrained)
»= Reward (unconstrained)
s Cost (constrained)

«+ Reward (constrained)

Fig. 3. Total cost and reward.

final reward is higher for the constrained case (dashed
red line in Fig. 3), the higher cost produced by abrupt
trajectory changes makes its final utility lower than
the utility generated without communication limitation.
Finally, the noisy curves are due to approximation errors
in the numerical integration. In Fig. 5, the global utility
increases progressively with the communication range.

1.8

16

T
141
L2F

1L

0.8

0.6

0.4

0.2F

0 L L L L L . ! ! ! |
0 1 2 3 4 5 6 7 8 9 10

Fig. 4. Total utility.

0.6

Utility

0 01 02 03 04 07 08 09 1

Comn

Fig. 5. Impact analysis of the communication range on
the utility.

6. CONCLUSION

In this paper, we have presented an auction-based frame-
work to address dynamic task allocation problems for
multi-agent systems with state-dependent utilities and
various task characteristics (such as terminal constraints,
completion time, etc.). Our greedy approach offers a
practical, yet efficient, solution to a class of realistic
and challenging dynamic task allocation problems for
autonomous mobile agents. In the case of large fleets of
autonomous systems, scalability issues may arise due to
the high computation time. In our future work, we will
explore ways to integrate tools from machine learning
and multi-agent reinforcement learning in our auction-
based decentralized task allocation framework in order
to reduce the computational cost and be able to address
more challenging problems.

REFERENCES

Arslan, G., Marden, J.R., and Shamma, J.S. (2007).
Autonomous Vehicle-Target Assignment: A Game-
Theoretlcal Formulation. J. Dyn. Syst. Meas. Control,
129(5), 584-596.

Bakolas, E 2014). A decentralized spatial partitioning
algorlthm ased on the minimum control effort metric.
2014 American Control Conference, 5264-5269.

Bakolas, E. and Lee, Y. (2021). Decentralized game-
theoretic control for dynamic task allocation problems
for multi-agent systems. In 2021 American Control
Conference (ACC), 3219-3224.

Battin, R. (1987). An introduction to the mathematics
and methods of astrodynamics. 559-561.

Capitan, J., Spaan, M.T., Merino, L., and Ollero, A.
2013). Decentralized multi-robot cooperation with
auctioned POMDPs. The International Journal of
Robotics Research, 32(6), 650-671.

Choi, H., Brunet, L., and How, J.P. (2009). Consensus-
based decentralized auctions for robust task allocation.
IEEE Transactions on Robotics, 25(4), 912-926.

Gautier, P., Johann, L.D., and Diguet, J.P. (2020).
Comparison of Market-based and DQN methods for
Multi-Robot processing Task Allocation (MRpTA).
IEEFE International Conference on Robotic Computing
(IRC).

Gerkey, B.P. and Mataric, M.J. (2002). Sold!: Auction
methods for multirobot coordination. IEEE Transac-
tions on Robotics and Automation, 18(5), 758-768.

Gerkey, B.P. and Matarié¢, M.J. (2004). A formal analysis
and taxonomy of task allocation in multi-robot sys-
tems. The International Journal of Robotics Research,
23(9), 939-954.

Hayat, S., Yanmaz, E., Bettstetter, C., and Brown,
T.X. (2020). Multi-objective drone path planning for
search and rescue with quality-of-service requirements.
Autonomous Robots, 44(7), 1183-1198.

Kim, K.S., Kim, H.Y., and Choi, H.L. (2019). Mini-
mizing communications in decentralized greedy task
allocation. Journal of Aerospace Information Systems,
16, 1-6.

Luo, L., Chakraborty, N., and Sycara, K. (2012). Com-
petitive analysis of repeated greedy auction algorithm
for online multi-robot task assignment. In 2012 IEEE
International Conference on Robotics and Automa-
tion, 4792-4799.

Nanjanath, M. and Gini, M. (2010). Repeated auctions
for robust task execution by a robot team. Robotics
and Autonomous Systems, 58(7), 900 — 909.

Otte, M., Kuhlman, M.J., and Sofge, D. (2020). Auctions
for multi-robot task allocation in communication lim-
ited environments. Autonomous Robots, 44(3), 547
584.

Phillips, S. and Parra, F. (2021). A case study on
auction-based task allocation algorithms in multi-
satellite systems. AIAA Scitech 2021 Forum.

Qu, G., Brown, D., and Li, N. (2019). Distributed greedy
algorithm for multi-agent task assignment problem
with submodular utility functions. Automatica, 105,
206 — 215.

Rahili, S., Riviere, B., and Chung, S.J. (2020). Dis-
tributed adaptive reinforcement learning: A method
for optimal routing. arXiv preprint arXiw:2005.01976.

Shin, H.S., Li, T., and Segui-Gasco, P. (2019). Sample
greedy based task allocation for multiple robot sys-
tems. arXiv preprint arXiv:1901.03258.

Whitbrook, A., Meng, Q., and Chung, P.W.H. (2019).
Addressing robustness in time-critical, distributed,
task allocation algorithms. Applied intelligence, 49(1),
1-15.

