
1

LELEC2870 - Project in Machine learning
Prediction of air-quality in Beijing

Group AM: Martin Braquet (06641500), Amaury Gouverneur (69331500)

Friday 20th December, 2019

I. INTRODUCTION

This report aims in predicting the concentration of
PM2.5 in the air of Beijing. This is done using regression
models on a dataset of 7684 records of meteorological
and weather data from March 1st 2013 to February 28th

2017. The 15 recorded input features are the following:

• time [year, month, day, hour],
• SO2, NO2, CO, O3, concentrations [µg/m3],
• temperature and dew point temperature [C

◦
],

• pressure [hPa],
• rain precipitation [mm],
• wind direction [cardinal] and speed [m/s],
• id of the air-quality. monitoring site.

The recorded output variable is the corresponding PM2.5
concentration [µg/m3].

This paper is organized as follows: features processing,
selection and extraction will be discussed in sections II,
III and IV, the error estimation and the models imple-
mentations are presented in section V and VI before
concluding in section VII.

II. FEATURES PROCESSING

The time feature recorded in the year, month, day, hour
format is converted in seconds in the variable time with
time = 0 corresponding to the first record. This format
is more usable but however does not express the cyclic
relations in time, namely the rotation of the earth around
the sun and the rotation of the earth around itself (see
Figure 1). To do so 4 extra variables are created: syear
and cyear, encoding the progress of the earth rotation
around the sun, and sday and cday, encoding the
progress of the earth rotation around itself. The values

are computed as follows:

syear = sin

(
2π

time

365 · 24 · 60 · 60

)
,

cyear = cos

(
2π

time

365 · 24 · 60 · 60

)
,

sday = sin

(
2π

time

24 · 60 · 60

)
,

sday = cos

(
2π

time

24 · 60 · 60

)
.

Fig. 1. Earth revolution around the sun

The wind direction recorded as cardinals directions are
also translated in a format expressing the cyclic relation,
swd and cwd, respectively the sine and cosine of the
angle of the cardinal direction on a wind rose (see Figure
2).

O

NO

N

NW

W

SW

S

SO

ONO

NNONNW

WNW

WSW

SSW SSO

OSO

Fig. 2. Wind rose

2

The complete set of inputs is thus composed of 17
features. The set of inputs is then normalized using a
standard normalization method.

III. FEATURES SELECTION

Features selection is a technique to drop some less
useful inputs. The intrinsic principle aims to maximize
the relevance (relation between input and output) and
minimize the redundancy (relation between input and
input).

It is important to consider the newly created features
(cos/sin) in the previous paragraph as a pair of inputs
resulting from one unique feature, it is thus not advised
to remove one of them (the sine or cosine) even if they
present a high dependency.

A. Correlation

Figure 3 presents the correlation between the inputs and
the output (absolute value). Since the correlation only
detects linear relations between variables, a zero corre-
lation between an input and the output is not sufficient
to drop this input.

SO
2

N
O

2
C

O O
3

te
m

p
pr

es
de

w
p

ra
in

sw
d

cw
d

w
sp

m
st

at
io

n
tim

e
sy

ea
r

cy
ea

r
sd

ay
cd

ay
PM

2.
5

SO2
NO2

CO
O3

temp
pres

dewp
rain
swd
cwd

wspm
station

timesyear
cyear
sday
cday

PM2.5

Correlation

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Correlation matrix between the inputs and the output

B. Mutual information

Figure 4 shows the mutual information between the
inputs and the output (absolute value). This method is
able to detect any dependency between variables and is
thus particularly purposeful to select the right features.

SO
2

N
O

2
C

O O
3

te
m

p
pr

es
de

w
p

ra
in

sw
d

cw
d

w
sp

m
st

at
io

n
tim

e
sy

ea
r

cy
ea

r
sd

ay
cd

ay
PM

2.
5

SO2
NO2

CO
O3

temp
pres

dewp
rain
swd
cwd

wspm
station

timesyear
cyear
sday
cday

PM2.5

Mutual Information

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Mutual Information matrix between the inputs and the output

C. Redundancy and relevance

Based on the correlation and MI obtained above, one
can drop the features in Table I because they have few
relevance with the output.

Feature MI with output
station 0.074
rain 0.079
swd 0.098
cwd 0.1
sday 0.11
cday 0.11
wspm 0.18

TABLE I
NON RELEVANT FEATURES

Additionally, it is possible to remove the temperature
(see Table II), the pressure (see Table III) and the time
(see Table IV) since they are redundant with other inputs.

Feature MI Correlation
dewp 0.57 0.81
cyear 0.79 0.9

TABLE II
RELATIONS BETWEEN SOME FEATURES AND A REDUNDANT

FEATURE: TEMPERATURE

Feature MI Correlation
dewp 0.54 0.74
cyear 0.79 0.82

TABLE III
RELATIONS BETWEEN SOME FEATURES AND A REDUNDANT

FEATURE: PRESSURE

It is worth noting that the dependencies between the time
and the other features is non linear, such that a small
correlation is computed.

3

Feature MI Correlation
syear 0.99 0.1
cyear 0.99 0.17

TABLE IV
RELATIONS BETWEEN SOME FEATURES AND A REDUNDANT

FEATURE: TIME

Finally, the set resulting of features selection contains 7
features.

IV. FEATURES EXTRACTION

Features extraction consists to transform the input into
other features such that this new smaller set of features
almost fully describes the content of the inputs.

A. Principal Component Analysis

The Principal Component Analysis method uses an or-
thogonal transformation to convert a set of inputs into
a set of linearly uncorrelated variables called principal
components [1].

Figure 5 depicts the error for several numbers of princi-
pal components, ranging from 1 to 17 (the full number
of features). One can conclude that the most important
correlation of the data are combined in 3 principal com-
ponents, lowering the error to 55.5 µg/m3. Adding more
components does not lead to better results considering
that having only 3 input features brings very efficient
computations.

However, it is important to note that this method is
linear and thus drops important variables if they are non-
linearly dependent. This problem depends upon the lin-
ear characteristics of the input features. It is consequent
for the data analysed here and hence leads to bad results
as discussed thereafter.

5 10 15

50

60

70

Number of principal components

E
rr

or
[µ
g
/
m

3
]

Fig. 5. Bootstrap 632 error for different numbers of principal
components

V. ERROR ESTIMATION

The errors of the following models are estimated thanks
to the Bootstrap 632 method gently provided in the
MLxtend package [2]. This highly efficient method is
characterized by a low bias and a low variance, which
makes it particularly purposeful for model validation
(compared to the simpler K-fold validation for instance).
If not mentioned in the following sections, the number of
splits in the Bootstrap method is set to 10 due to the lim-
ited available computation power in classical computers.
This small number only influences the randomness of the
bootstrap error but not the mean value (most important
part).

Figure 6 shows the error distribution of the linear regres-
sion model with the selected features, for 1 and 10 splits.
The error is very narrow for 10 splits (σ = 0.255 µg/m3)
compared to 1 split (σ = 0.762 µg/m3), computing the
error with 10 splits is thus cogent.

42 43 44 45 46 47
0

50

100

150

Error [µg/m3]

Sa
m

pl
es

10 splits
1 split

Fig. 6. Bootstrap 632 error distribution for different numbers of splits

VI. MODELS IMPLEMENTATIONS

Seven models have been trained and compared in order
to bring the most powerful one for the estimation of the
secret dataset. These models are tested with the bootstrap
632 error on the three previously detailed input sets: the
full features, the selected features and the PCA features.

Let the dataset be D = (x1, y1), (x2, y2), . . . , (xN , yN)
where xi is the input value and yi is the target value, the
goal of a regression model is to estimate the function
y = f(x).

4

A. Linear regression

The linear regression estimates the function y = f(x)
by f̂(x) = wTx. The weight vector w is computed by
minimizing the mean squared error on the training data:

min
w
||ytrain −wTXtrain||22.

The error for the three implemented sets is given in
Table V. One can see that the 7 selected features give
almost the same error as for the full input set, which
validates the features selection (at least for linear mod-
els). However, the PCA method, although very fast, is
not convincing because it has few features.

Features Error [µg/m3]
Full 44.35

Selected 44.50
PCA 54.10

TABLE V
BOOTSTRAP 632 ERROR FOR THE LINEAR REGRESSION MODEL

B. Ridge regression

The ridge regression is similar to the linear regression
with a shrinkage penalty on w (L2 regularization):

min
w
||ytrain −wTXtrain||22 + λ||w||22.

The parameter λ controls the relative impact of the
two terms. Increasing λ decreases the variance while
increasing the bias.

As shown in Figure 7, the ridge regression performs
better with the selected features and full features than
with the PCA features. The performance is almost con-
stant for λ ∈ [10−2, 102] and decreases after when the
model starts to suffer from underfitting. The best result
is achieved with the full features and λ = 0.61, the error
is 44.15 µg/m3.

10−2 10−1 100 101 102 103 104

45

50

55

λ

E
rr

or
[µ
g
/
m

3
]

Full features
Selected features
PCA features

Fig. 7. Bootstrap 632 error for the Ridge regression model

C. Lasso

The Lasso regression is similar to the ridge regression
with a shrinkage penalty on w (L1 regularization):

min
w
||ytrain −wTXtrain||22 + λ

N∑
i=1

|wi|.

As shown in Figure 8, the lasso regression performances
are almost constant until λ = 1 and start to decrease after
because of underfitting. Similarly to the ridge regression
the Lasso performs better with the full and selected
features. The best result is achieved with the full features
and λ = 0.01, the error is 44.06 µg/m3.

10−2 10−1 100 101

45

50

55

60

65

λ

E
rr

or
[µ
g
/m

3
]

Full features
Selected features
PCA features

Fig. 8. Bootstrap 632 error for the Lasso model

0 10 20 30 40

presrain
station

cwd
time
temp
cday
swd
sday

wspmswd
sday

wspmSO2
O3

syearNO2
cyearCO
dewp

Weight

Fig. 9. Weights of the Lasso model (λ = 0.1)

The weights for λ = 0.1 are given in Figure 9. As found
in the features selection, the output is very sensitive to

5

three features, and more or less 7 features completely
describe the input space. Some coefficients end up being
set to almost zero, making the model easier to interpret.

As both the Ridge regression and Lasso models are better
with a small regularization coefficient, they are redun-
dant with the linear regression. This can be explained
by the high number of samples used for the training,
which are sufficient to prevent overfitting in the linear
regression model. These two additional models cannot
exploit their advantage of reducing the linear regression
overfitting.

D. K-Nearest Neighbour

Figure 10 presents the error for the KNN model with
respect to the number of neighbours K (hyperparameter).
For this model, using the full input set should dramati-
cally increase the error since in a high dimensional space,
the K nearest neighbours (with the Euclidian norm) are
greatly influenced by useless dimensions and thus lead
to select wrong neighbours. As expected, the model with
features selection outperforms the others, reaching an
error of 38.51 µg/m3 for K = 4.

0 10 20 30 40 50

40

45

50

Number of neighbours

E
rr

or
[µ
g
/
m

3
]

Full features
Selected features
PCA features

Fig. 10. Bootstrap 632 error for the KNN model

E. Regression tree

A regression tree partitions the input space in smaller
regions recursively until reaching a leaf where a simple
model is fitted to. Each node represents a binary ques-
tions about one or several feature(s) that will divide the
space in two. For a classic regression tree, the model
at each leaf is a constant estimate: the average of the
target value of the training data that belongs to this leaf.
The binary questions on the nodes are chosen such that

the information gain is maximized. Mechanisms such as
pruning are necessary to avoid overfitting.

As shown in Figure 11, the performance obtained by
the full and selected features are very close and out-
perform the ones obtained with the PCA features. The
performances increase as the maximal depth of the tree
increases until reaching a maximum at 7 for the PCA
features, then it starts to overfit since there are too few
features in PCA. The error obtained with the full and
selected features stops decreasing and starts to level out
at a depth of around 10. It has to be noted than the
trees do not grow further than a depth of 33, explaining
the absence of overfitting as the allowed maximal depth
continues to increase. The best result is achieved with
the selected features and a depth of 11, the error is
40.23 µg/m3.

0 10 20 30 40

40

50

60

70

Maximum depth

E
rr

or
[µ
g
/
m

3
]

Full features
Selected features
PCA features

Fig. 11. Bootstrap 632 error for the regression tree model

F. Bootstrap aggregating trees

The core idea of an ensemble method is to train weak
regressors (or classifiers) and combine them to construct
a regressor (or classifier) more powerful than any of the
individual ones.

A simple ensemble method is the so-
called Bootstrap aggregating or Bagging. Let
D = (x1, y1), (x2, y2), . . . , (xN , yN) be the training
data, the principle of the Bagging method is detailed
below.

Iteratively, for b = 1, . . . , B, do the following:

• sample training examples, with replacement, N ′

times from D to create Db(N
′ ≤ N),

6

• use this bootstrap sample Db to estimate the regres-
sion (or classification) function fb.

The bagging estimate is

fbag(x) =
1

B

B∑
b=1

fb(x).

As shown in Figure 12, the full and selected features
are very close and outperform the ones obtained with
the PCA features. The error decreases as the maximum
depth increases until starting to plateau at a depth of 12
with no overfitting. As for the regression tree, this is
due to the fact that the trees do not grow deeper than
33. The best result is achieved with the selected features
and a depth of 19, the error obtained in this case is
31.42 µg/m3.

0 10 20 30 40

30

40

50

60

70

Maximum depth

E
rr

or
[µ
g
/
m

3
]

Full features
Selected features
PCA features

Fig. 12. Bootstrap 632 error for the Bagging trees model

G. Multilayer Perceptron

A multilayer perceptron takes as inputs the features
(17 for the full set and 7 for the selected/PCA set)
and propagates these information though a deep neural
network to output the final PM2.5 estimation. At each
layer, the data are subject to a batch normalisation
followed by a ReLU activation function.

Considering the high number of parameters which are
subject to optimization (number of hidden layers, neu-
rons per hidden layer, epochs, learning rate, batch size),
it might seem interesting to use an optimization al-
gorithm such as a greedy search or a genetic search.
However, it appears after simulation that finding this
optimum is difficult since the performances are better
when the network is very large, in such a way that
overfitting is only noticed for big neural networks which

are impossible to train in a limited time. The following
paragraphs will thus be dedicated to analysing the error
for several numbers of neurons per layer, epochs per
training period, and hidden layers.

The results presented in Figure 13 depict the error vari-
ation for different numbers of neurons (hyperparameter)
in each of the 8 hidden layers, ranging from 1 to 50.
The learning step is done by feeding the network with
the inputs/output pairs, more precisely with 50 epochs
and a batch size of 128. It can be seen that the neural
network performs the best with the full features as inputs
since the weights of the network are precisely adapted to
select the information in each features, even the smallest
one. On the other hand, deep neural networks do not aim
at dropping some features, which is proven by the poor
results from features selection and features extraction.

0 10 20 30 40 50
30

40

50

60

Neurons per layer

E
rr

or
[µ
g
/m

3
]

Full features
Selected features
PCA features

Fig. 13. Bootstrap 632 error for the MLP model with different
numbers of neurons per hidden layer

One can also analyse the error for different training
periods, characterised by a varying number of epochs.
Figure 14 shows this error with a number of epochs
ranging from 1 to 80. The error is stabilized after
around 50 epochs for all inputs subsets since all the
neural networks weights do not vary anymore. The error
does not increase for additional epochs, leading to the
conclusion that the network configuration is too small to
bring overfitting due to long training periods1.

1In case of possible overfitting, the early stop approach consists to
stop the training when the validation error reaches a minimum.

7

0 20 40 60 80
30

40

50

60

Number of epochs

E
rr

or
[µ
g
/m

3
]

Full features
Selected features
PCA features

Fig. 14. Bootstrap 632 error for the MLP model with different
numbers of epochs per training period

The next step thus consists to increase the number of
hidden layers and reduce the error as far as possible.
Figure 15 presents this error for the full set, 50 neurons
per hidden layer and a number of epochs proportional
to the number of layers since larger networks require a
longer training period. One can see a minimum error for
18 hidden layers but no overfitting appears as it should
be expected for such large networks. Hence, overfitting
should arise for larger networks.

5 10 15 20

32

34

36

38

40

Number of layers

E
rr

or
[µ
g
/m

3
]

Full features

Fig. 15. Bootstrap 632 error for the MLP model with different
numbers of hidden layers

Finally, a huge neural network of 20 hidden layers and
100 neurons has been trained with 300 epochs. It gives a
bootstrap 632 error of 34.12 µg/m3, suggesting the start
of a small overfitting.

It can be noted that the PyTorch library has been used,
leading the authors to implement an estimator in order
to match the specifications of the bootstrap 632 method
[3].

VII. CONCLUSION

To conclude, the lowest error for the analysed models
are summarized in Table VI (the errors are expressed in
µg/m3).

Model Error (Full) Error (Selected) Error (PCA)
Linear regression 44.35 44.50 54.10
Ridge regression 44.15 44.38 53.91
Lasso 44.06 44.07 53.92
KNN 44.12 38.51 48.58
Regression tree 40.39 40.23 51.48
Boot. agg. trees 31.60 31.42 41.78
MLP 31.94 37.52 46.16

TABLE VI
SUMMARIZED ERROR FOR ALL THE MODELS

A. Final model selection

The bootstrap aggregating trees method with the features
selection is chosen as the final method since it has the
lowest error. This model is used to predict the output
of the secret set, Y2. The bootstrap 632 method aims
to estimate the error on a set belonging to the entire
possible space. Hence, the expected RMS error on Y2 is
the bootstrap 632 error on Y1: 31.42 µg/m3.

Finally, combining the previous model predictions by
means of ensemble methods or a voting classifier are
good perspectives for a future work in the prediction
improvements and the quest for the lowest error.

REFERENCES

[1] Wikipedia. Principal component analysis. 2019.
URL: https : / / en . wikipedia . org / wiki / Principal
component analysis.

[2] Sebastian Raschka. “MLxtend: Providing machine
learning and data science utilities and extensions
to Python’s scientific computing stack”. In: The
Journal of Open Source Software 3.24 (Apr. 2018).
DOI: 10.21105/joss.00638. URL: http://joss.theoj.
org/papers/10.21105/joss.00638.

[3] Adam Paszke et al. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Ad-
vances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc.,
2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an- imperative-style-high-
performance-deep-learning-library.pdf.

